We demonstrate highly selective and sensitive potentiometric ion sensors for calcium ion detection, operated without the use of a reference electrode. The sensors consist of AlGaN/GaN heterostructure-based transistor devices with chemical functionalisation of the gate area using poly (vinylchloride)-based (PVC) membranes having high selectivity towards calcium ions, Ca. The sensors exhibited stable and rapid responses when introduced to various concentrations of Ca. In both 0.01 M KCl and 0.01 M NaCl ionic strength buffer solutions, the sensors exhibited near Nernstian responses with detection limits of less than 10 M, and a linear response range between 10-10 M. Also, detection limits of less than 10 M were achieved for the sensors in both 0.01 M MgCl and 0.01 M LiCl buffer solutions. AlGaN/GaN-based devices for Ca detection demonstrate excellent selectivity and response range for a wide variety of applications. This work represents an important step towards multi-ion sensing using arrays of ion-selective field effect transistor (ISFET) devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2017.07.066 | DOI Listing |
Nat Commun
January 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China.
On-site or in-sensor biosignal transduction and amplification can offer several benefits such as improved signal quality, reduced redundant data transmission, and enhanced system integration. Ambipolar organic electrochemical transistors (OECTs) are promising for this purpose due to their high transconductance, low operating voltage, biocompatibility, and suitability for miniaturized amplifier design. However, limitations in material performance and stability have hindered their application in biosignal amplification.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea.
In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors.
View Article and Find Full Text PDFAnal Biochem
January 2025
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China. Electronic address:
Luminol-loaded mesoporous carbon nanospheres (MCs@LU) were utilized to develop a highly sensitive electrochemiluminescence (ECL) sensor for the detection of L-cysteine (L-Cys). L-Cys acted as the coreactant of luminol, and the pore confinement effect of mesoporous carbons (MCs) resulted in a robust ECL signal. Upon optimization, a linear correlation between the ECL intensity and L-Cys concentration was observed over the range of 5.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Department of Biomedical Science and Environmental Biology, School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:
Anti-mullerian hormone (AMH) detection receives much attention since it is used as an ideal biomarker for quantitative assessment of ovarian reserve. The present study proposed a first report on the use of MOF-on-MOF as an electrochemical sensor for recognizing AMH in buffer and serum media. The MOF-on-MOF, MIL-88 B@UiO66NH was synthesized by the internal extended growth method (IEGM) involving MIL-88 B on UiO66NH by in situ method for the first time.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
Aggregation-induced emission (AIE)-active fluorescent hydrogel materials have found extensive applications in soft robotics, wearable electronics, information encryption, and biomedicine. Nevertheless, it continues to be difficult to create hydrogels that are both highly luminescent and possess strong mechanical capabilities. This study introduces a combined approach of prestretching and solvent exchange to create anisotropic luminous hydrogels made of poly(methacrylic acid-methacrylamide).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!