Polymer inclusion membranes (PIMs) in chemical analysis - A review.

Anal Chim Acta

School of Chemistry, The University of Melbourne, Victoria 3010, Australia. Electronic address:

Published: September 2017

This review highlights the increasing interest in polymer inclusion membranes (PIMs) in analytical chemistry as they are adapted to new and novel applications. PIMs are polymer-based liquid membranes and were first introduced 50 years ago as the sensing membranes in ion-selective electrodes and optodes. More recently however, PIMs have been used for other applications in analytical chemistry such as for sample separation, sample pre-concentration, electro-driven extraction, and passive sampling, and have also been incorporated into on-line and automated analysis systems. The present review provides a general overview of the analytical chemistry applications of PIMs reported in the literature to date and illustrates their versatility for solving challenging chemical analysis problems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2017.07.032DOI Listing

Publication Analysis

Top Keywords

analytical chemistry
12
polymer inclusion
8
inclusion membranes
8
membranes pims
8
chemical analysis
8
applications pims
8
pims
5
membranes
4
pims chemical
4
analysis review
4

Similar Publications

Comprehensive Approach for Sequential MALDI-MSI Analysis of Lipids, -Glycans, and Peptides in Fresh-Frozen Rodent Brain Tissues.

Anal Chem

January 2025

Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden.

Multiomics analysis of single tissue sections using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) provides comprehensive molecular insights. However, optimizing tissue sample preparation for MALDI-MSI to achieve high sensitivity and reproducibility for various biomolecules, such as lipids, -glycans, and tryptic peptides, presents a significant challenge. This study introduces a robust and reproducible protocol for the comprehensive sequential analysis of the latter molecules using MALDI-MSI in fresh-frozen rodent brain tissue samples.

View Article and Find Full Text PDF

While the conformational ensembles of disordered peptides and peptidomimetics are complex and challenging to characterize, they are a critical component in the paradigm connecting macromolecule sequence, structure, and function. In molecules that do not adopt a single predominant conformation, the conformational ensemble contains rich structural information that, if accessible, can provide a fundamental understanding related to desirable functions such as cell penetration of a therapeutic or the generation of tunable enzyme-mimetic architecture. To address the fundamental challenge of describing broad conformational ensembles, we developed a model system of peptidomimetics comprised of polar glycine and hydrophobic -butylglycine to characterize using a suite of analytical techniques.

View Article and Find Full Text PDF

Carbon quantum dots (CQDs) are a recently developed class of fluorescent nanoparticles made from carbon. Co-doping with heteroatoms such as nitrogen and sulfur improved the properties and generated a high quantum yield. In the proposed study, we utilized a simple, cost-effective, single-stage hydrothermal approach to produce extreme photoluminescence co-doped, nitrogen and sulfur, CQDs (N,S-CODs).

View Article and Find Full Text PDF

The detection of intracellular biothiols (cysteine, N-acetyl cysteine, and glutathione) with high selectivity and sensitivity is important to reveal biological functions. In this study, a 2-(2-methoxy-4-methylphenoxy)-3-chloro-5,8-dihydroxynaphthalene-1,4-dione (DDN-O) compound was newly synthesized and used as a fluorogenic probe (detector molecule) in the fluorometric method for the rapid, highly selective, and sensitive determination of biothiols. The intensity values (λ = 260 nm, λ = 620 nm) of the product were measured by adding biothiols to the reaction medium at varying concentrations and the glutathione equivalent thiol content values of each biothiol were calculated.

View Article and Find Full Text PDF

Recent activity in the area of chiroptical phenomena has been focused on the connection between structural asymmetry, electron spin configuration and light/matter interactions in chiral semiconductors. In these systems, spin-splitting phenomena emerge due to inversion symmetry breaking and the presence of extended electronic states, yet the connection to chiroptical phenomena is lacking. Here, we develop an analytical effective mass model of chiral excitons, parameterized by density functional theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!