A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PDL1 And LDHA act as ceRNAs in triple negative breast cancer by regulating miR-34a. | LitMetric

PDL1 And LDHA act as ceRNAs in triple negative breast cancer by regulating miR-34a.

J Exp Clin Cancer Res

Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, People's Republic of China.

Published: September 2017

Backgroud: The purpose of this study was to elucidate the regulation of programmed death ligand 1 (PDL1), lactate dehydrogenase A (LDHA) and miR-34a in triple negative breast cancer (TNBC) and to explore the function and mechanism of PDL1 and LDHA as competitive endogenous RNAs (ceRNAs) in TNBC via regulation of miR-34a.

Methods: Western blotting, quantitative RT-PCR (qRT-PCR) and immunohistochemistry (IHC) assays were conducted to explore the expression of PDL1, LDHA and miR-34a in TNBC and correlations between them. MTS cell viability, Transwell migration, glucose consumption and lactate production assays and flow cytometry were performed and mouse xenograft models were constructed to explore the functions and regulation of the PDL1 3'UTR and LDHA 3'UTR and miR-34a in TNBC.

Results: We found that PDL1 and LDHA were synchronously upregulated in TNBC cell lines and tissues. Co-expression of PDL1 and LDHA was correlated with poor outcome in TNBC. Both PDL1 and LDHA are targets of miR-34a, and the 3'UTRs of PDL1 and LDHA both have binding sites for miR-34a. The functions of PDL1 and LDHA were inhibited by miR-34a. In addition, PDL1 and LDHA acted as ceRNAs to promote the expression and function of each other through regulation of miR-34a in TNBC.

Conclusions: This study provides a new theoretical basis for a novel TNBC therapeutic strategy. Simultaneously targeting PDL1 and LDHA, which would combine immunotherapy and metabolically targeted treatments, might shed some light on the treatment of breast cancer, especially TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602941PMC
http://dx.doi.org/10.1186/s13046-017-0593-2DOI Listing

Publication Analysis

Top Keywords

pdl1 ldha
40
pdl1
12
breast cancer
12
ldha
11
triple negative
8
negative breast
8
mir-34a
8
ldha mir-34a
8
cancer tnbc
8
tnbc
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!