Purpose: To investigate how necroptosisis, i.e. programmed necrosis, is involved in MODS, and to examine whether Nec-1, a specific necroptosis inhibitor, ameliorates multiorgan injury in MODS.
Experimental Design: A model of MODS was established in six-week old SD rats using fracture trauma followed by hemorrhage. Control animals received sham surgery. Cell death form and necrosome formation were measured by fluorescence-activated cell sorting and western blotting. MODS rats were randomly assigned to receive Nec-1 or saline with pretreatment and once daily. The first end-point was 72 hours survival. Organ injury and dysfunction, inflammatory cytokine levels, and necroptotic execution protein expression were also recorded.
Results: Organ injury and dysfunction were significantly more severe in the MODS group than the sham group (all <0.01). Furthermore, MODS-induced liver, lung and kidney tissue injury was characterized by necroptosis rather than apoptosis, and accompanied by necrosome formation. Compared to MODS group, Nec-1 administration significantly improved 72 hours survival (<0.01). Nec-1 administration significantly reduced necroptosis-induced liver, lung and kidney injury and dysfunction, inhibited inflammatory cytokines production, inhibited release of necroptotic execution proteins such as high-mobility group box 1 and mixed-lineage kinase domain-like protein pseudokinase in MODS rats (all <0.01).
Conclusions: These results suggest that necroptosis is involved the pathology of MODS. Further, a necroptotic inhibitor Nec-1 may be considered as an adjunct treatment for MODS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593618 | PMC |
http://dx.doi.org/10.18632/oncotarget.18252 | DOI Listing |
Shock
January 2025
The University of Alabama, Birmingham, Department of Surgery and Center for Injury Science, Division of Trauma and Acute Care Surgery, Birmingham, AL.
Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.
View Article and Find Full Text PDFDrug Chem Toxicol
January 2025
Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India.
Cyclophosphamide is a key component of numerous chemotherapeutic protocols, demonstrating broad-spectrum efficacy against various malignancies and non-cancerous conditions. This review examines CPM's metabolic pathways, therapeutic applications, and its resulting organ-specific toxicities. Despite its clinical benefits in treating nephrotic syndrome, encephalomyelitis, breast cancer, ovarian cancer, and other diseases, CPM is associated with significant adverse effects on the kidneys, liver, heart, lungs, and intestines.
View Article and Find Full Text PDFMed Klin Intensivmed Notfmed
January 2025
Klinik für Neurologie und Neurophysiologie, Universitätsklinikum Freiburg, Breisacher Str. 64, 79106, Freiburg, Deutschland.
We report the case of a young patient with severe hypoxic brain injury after cardiopulmonary resuscitation, resulting in brain death/death by neurologic criteria (BD/DNC). Consistent with the patient's expressed wishes, treatment was sustained to facilitate organ donation. However, in the context of a severe post-resuscitation syndrome and physiological disturbances resulting from BD/DNC, refractory circulatory shock ensued.
View Article and Find Full Text PDFJ Dev Biol
December 2024
Comparative Histolab Padova, 35100 Padova, Italy.
The present, brief review paper summarizes previous studies on a new interpretation of the presence and absence of regeneration in invertebrates and vertebrates. Broad regeneration is considered exclusive of aquatic or amphibious animals with larval stages and metamorphosis, where also a patterning process is activated for whole-body regeneration or for epimorphosis. In contrast, terrestrial invertebrates and vertebrates can only repair injury or the loss of body parts through a variable "recovery healing" of tissues, regengrow or scarring.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Hepatobiliary Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China.
Biliary duct injury, biliary atresia (BA), biliary tract tumors, primary sclerosing cholangitis (PSC), and other diseases are commonly encountered in clinical practice within the digestive system. To gain a better understanding of the pathogenesis and development of these diseases and explore more effective treatment methods, organoid technology has recently garnered significant attention. Organoids are three-dimensional structures derived from stem/progenitor cells that can faithfully mimic the intricate structure and physiological function of tissues or organs .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!