Femtosecond mega-electron-volt electron microdiffraction.

Ultramicroscopy

SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025, USA. Electronic address:

Published: January 2018

To understand and control the basic functions of physical, chemical and biological processes from micron to nano-meter scale, an instrument capable of visualizing transient structural changes of inhomogeneous materials with atomic spatial and temporal resolutions, is required. One such technique is femtosecond electron microdiffraction, in which a short electron pulse with femtosecond-scale duration is focused into a micron-scale spot and used to obtain diffraction images to resolve ultrafast structural dynamics over a localized crystalline domain. In this letter, we report the experimental demonstration of time-resolved mega-electron-volt electron microdiffraction which achieves a 5 μm root-mean-square (rms) beam size on the sample and a 110 fs rms temporal resolution. Using pulses of 10k electrons at 4.2 MeV energy with a normalized emittance 3 nm-rad, we obtained high quality diffraction from a single 10 μm paraffin (CH) crystal. The phonon softening mode in optical-pumped polycrystalline Bi was also time-resolved, demonstrating the temporal resolution limits of the instrument. This new characterization capability will open many research opportunities in material and biological sciences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2017.08.019DOI Listing

Publication Analysis

Top Keywords

electron microdiffraction
12
mega-electron-volt electron
8
temporal resolution
8
femtosecond mega-electron-volt
4
electron
4
microdiffraction understand
4
understand control
4
control basic
4
basic functions
4
functions physical
4

Similar Publications

From 1954 to 1983, a vermiculite processing facility operated near the Honolulu airport and processed raw material from the Libby, Montana mine, which is now well known for the high asbestos content of its clay deposits. The factory was closed in 1983 due to health hazard concerns, and remediation was performed in 2001 as part of the Libby mine superfund project. However, because of close proximity of the closed-down facility to residential areas of metropolitan Honolulu, some concerns remain regarding the possible environmental persistence of the harmful contaminant.

View Article and Find Full Text PDF

2D Helium Atom Diffraction from a Microscopic Spot.

Phys Rev Lett

December 2023

Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

A method for measuring helium atom diffraction with micron-scale spatial resolution is demonstrated in a scanning helium microscope (SHeM) and applied to study a micron-scale spot on the (100) plane of a lithium fluoride (LiF) crystal. The positions of the observed diffraction peaks provide an accurate measurement of the local lattice spacing, while a combination of close-coupled scattering calculations and Monte Carlo ray-tracing simulations reproduce the main variations in diffracted intensity. Subsequently, the diffraction results are used to enhance image contrast by measuring at different points in reciprocal space.

View Article and Find Full Text PDF

New synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.

View Article and Find Full Text PDF

This study presents a comparison of the protective properties of three concretes of similar composition on the effect of chloride ions. To determine these properties, the values of the diffusion and migration coefficients of chloride ions in concrete were determined using both standard methods and the thermodynamic ion migration model. We tested a comprehensive method for checking the protective properties of concrete against chlorides.

View Article and Find Full Text PDF

In the present work we investigate the growth of monolayer MoSe on selenium-intercalated graphene on Ru(0001), a model layered heterostructure combining a transition metal dichalcogenide with graphene, using low energy electron microscopy and micro-diffraction. Real-time observation of MoSe on graphene growth reveals the island nucleation dynamics at the nanoscale. Upon annealing, larger islands are formed by sliding and attachment of multiple nanometer-sized MoSe flakes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!