Synthesis and Properties of 2D Carbon-Graphdiyne.

Acc Chem Res

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences , Beijing 100190, P. R. China.

Published: October 2017

Graphdiyne (GDY) is a flat material comprising sp- and sp-hybridized carbon atoms with high degrees of π conjugation that features uniformly distributed pores. It is interesting not only from a structural point of view but also from the perspective of its electronic, chemical, mechanical, and magnetic properties. We have developed an in situ homocoupling reaction of hexaethynylbenzene on Cu foil for the fabrication of large-area ordered films of graphdiyne. These films are uniform and composed of graphdiyne multilayers. The conductivity of graphdiyne films, calculated at 2.52 × 10 S m, is comparable to that of Si, suggesting excellent semiconducting properties. Through morphology-controlled syntheses, we have prepared several well-defined graphdiyne structures (e.g., nanotubes, nanowires, and nanowalls) having distinct properties. The graphdiyne nanotube arrays and graphdiyne nanowalls exhibited excellent field emission performance, higher than that of some other semiconductors such as graphite and carbon nanotubes. These structures have several promising applications, for example, as energy storage materials and as anode materials in batteries. The unique atomic arrangement and electronic structure of graphdiyne also inspired us to use it to develop highly efficient catalysts; indeed, its low reduction potential and highly conjugated electronic structure allow graphdiyne to be used as a reducing agent and stabilizer for the electroless deposition of highly dispersed and surfactant-free Pd clusters. GDY-based three-dimensional (3D) nanoarchitectures featuring well-defined porous network structures can function as highly active cathodes for H evolution. Heteroatom-doped GDY structures are excellent metal-free electrocatalysts for the oxygen reduction reaction (ORR). Its excellent electrocatalytic activity and inexpensive, convenient, and scalable preparation make GDY a promising candidate for practical and efficient energy applications; indeed, we have explored the application of GDY as a highly efficient lithium storage material and have elucidated the method through which lithium storage occurs in multilayer GDY. Lithium-ion batteries featuring GDY-based electrodes display excellent electrochemical performance, including high specific capacity, outstanding rate performance, and long cycle life. We have also explored the application of GDY in energy conversion and found that it exhibits excellent conductivity. In this Account, we summarize the relationships between the functions of graphdiyne and its well-defined nanostructures. Our results suggest that GDY is a novel 2D carbon material possessing many attractive properties. It can be designed into new nanostructures and materials across a range of compositions, sizes, shapes, and functionalities and can be applied in the fields of electronics, optics, energy, and optoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.7b00205DOI Listing

Publication Analysis

Top Keywords

graphdiyne
10
graphdiyne films
8
electronic structure
8
highly efficient
8
explored application
8
application gdy
8
lithium storage
8
gdy
7
excellent
6
highly
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!