We analyze the condition under which Kerr combs generate the highest microwave output power after photodetection. These optimal comb states correspond to configurations in which the sidemode-to-pump ratio is the highest possible. For the case of primary combs, we show how the interplay between the power and frequency of the pump laser critically influences this ratio, which has a direct influence on the phase noise performance of the generated microwaves. We also experimentally demonstrate primary combs with a sidemode-to-pump ratio as high as -2 dB, thereby leading to efficient energy conversion from the lightwave to the microwave frequency range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.42.003522 | DOI Listing |
We analyze the condition under which Kerr combs generate the highest microwave output power after photodetection. These optimal comb states correspond to configurations in which the sidemode-to-pump ratio is the highest possible. For the case of primary combs, we show how the interplay between the power and frequency of the pump laser critically influences this ratio, which has a direct influence on the phase noise performance of the generated microwaves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!