A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thioredoxin 2 Offers Protection against Mitochondrial Oxidative Stress in H9c2 Cells and against Myocardial Hypertrophy Induced by Hyperglycemia. | LitMetric

AI Article Synopsis

  • Mitochondrial oxidative stress plays a significant role in developing diabetic cardiomyopathy, and Thioredoxin 2 (Trx2) is a key mitochondrial antioxidant involved in reducing oxidative damage.
  • Inhibiting Trx reductase 2 (TrxR2) leads to an increase in reactive oxygen species (ROS) and worsens heart function, while high glucose conditions decrease Trx2 levels in cardiac cells and diabetic rat hearts.
  • Overexpressing Trx2 in high glucose-treated cardiac cells helps protect against oxidative damage, improves ATP production, and reduces harmful gene expression linked to heart stress, suggesting that boosting Trx2 could benefit diabetic hearts.

Article Abstract

Mitochondrial oxidative stress is thought to be a key contributor towards the development of diabetic cardiomyopathy. Thioredoxin 2 (Trx2) is a mitochondrial antioxidant that, along with Trx reductase 2 (TrxR2) and peroxiredoxin 3 (Prx3), scavenges H₂O₂ and offers protection against oxidative stress. Our previous study showed that TrxR inhibitors resulted in Trx2 oxidation and increased ROS emission from mitochondria. In the present study, we observed that TrxR inhibition also impaired the contractile function of isolated heart. Our studies showed a decrease in the expression of Trx2 in the high glucose-treated H9c2 cardiac cells and myocardium of streptozotocin (STZ)-induced diabetic rats. Overexpression of Trx2 could significantly diminish high glucose-induced mitochondrial oxidative damage and improved ATP production in cultured H9c2 cells. Notably, Trx2 overexpression could suppress high glucose-induced atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression. Our studies suggest that high glucose-induced mitochondrial oxidative damage can be prevented by elevating Trx2 levels, thereby providing extensive protection to the diabetic heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618607PMC
http://dx.doi.org/10.3390/ijms18091958DOI Listing

Publication Analysis

Top Keywords

mitochondrial oxidative
16
oxidative stress
12
high glucose-induced
12
offers protection
8
h9c2 cells
8
glucose-induced mitochondrial
8
oxidative damage
8
natriuretic peptide
8
trx2
6
mitochondrial
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!