The exactly solvable Kitaev model on the honeycomb lattice has recently received enormous attention linked to the hope of achieving novel spin-liquid states with fractionalized Majorana-like excitations. In this review, we analyze the mechanism proposed by Jackeli and Khaliullin to identify Kitaev materials based on spin-orbital dependent bond interactions and provide a comprehensive overview of its implications in real materials. We set the focus on experimental results and current theoretical understanding of planar honeycomb systems (NaIrO, α-LiIrO, and α-RuCl), three-dimensional Kitaev materials (β- and γ-LiIrO), and other potential candidates, completing the review with the list of open questions awaiting new insights.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aa8cf5 | DOI Listing |
Phys Rev Lett
December 2024
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
Materials (Basel)
December 2024
Computational Nanoelectronics Group, University of Zagreb Faculty of Electrical Engineering and Computing, HR 10000 Zagreb, Croatia.
The problems of disorder and insufficient system length are generally regarded as central problems in the realization of Majorana zero modes (MZM), which are a promising platform for realizing fault-tolerant topological quantum computing (TQC). In this work, we analyze eigenenergy spectra and transport properties of finite Kitaev chains using quantum transport simulations in a wide design space of hopping amplitude (), superconductor pairing (Δ), and electrochemical potential. Our goal is to determine critical or minimum acceptable chain lengths to obtain oscillation-free MZMs with suitable microsecond coherence times, and observable zero-bias conductance peaks (ZBCP) quantized almost at ~2/.
View Article and Find Full Text PDFNat Commun
December 2024
Clarendon Laboratory, University of Oxford Physics Department, Oxford, OX1 3PU, UK.
The physics of spin-orbit entangled magnetic moments of 4d and 5d transition metal ions on a honeycomb lattice has been much explored in the search for unconventional magnetic orders or quantum spin liquids expected for compass spin models, where different bonds in the lattice favour different orientations for the magnetic moments. Realising such physics with rare-earth ions is a promising route to achieve exotic ground states in the extreme spin-orbit limit; however, this regime has remained experimentally largely unexplored due to major challenges in materials synthesis. Here we report the successful synthesis of powders and single crystals of β-NaPrO, with 4f Pr j = 1/2 magnetic moments arranged on a hyperhoneycomb lattice with the same threefold coordination as the planar honeycomb.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
In the presence of an external magnetic field, the Kitaev model could host either gapped topological anyons or gapless Majorana fermions. In α-RuCl_{3}, the gapped and gapless cases are only separated by a 30° rotation of the in-plane magnetic field vector. The presence or absence of the spectral gap is key for understanding the thermal transport behavior in α-RuCl_{3}.
View Article and Find Full Text PDFNano Lett
November 2024
Shenzhen Geim Graphene Center & Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
As topological quasi-particles in magnetic materials, skyrmions and antiskyrmions show potential in spintronics for information storage and computing. However, effectively controlling and separating these entities remain significantly challenging. Here, we demonstrate that anisotropic Kitaev exchange can distinctly influence the static and dynamic behaviors for skyrmions and antiskyrmions, thus aiding their manipulation and separation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!