The Thermodynamic Basis of the Fuzzy Interaction of an Intrinsically Disordered Protein.

Angew Chem Int Ed Engl

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, Slovenia.

Published: November 2017

Many intrinsically disordered proteins (IDP) that fold upon binding retain conformational heterogeneity in IDP-target complexes. The thermodynamics of such fuzzy interactions is poorly understood. Herein we introduce a thermodynamic framework, based on analysis of ITC and CD spectroscopy data, that provides experimental descriptions of IDP association in terms of folding and binding contributions which can be predicted using sequence folding propensities and molecular modeling. We show how IDP can modulate the entropy and enthalpy by adapting their bound-state structural ensemble to achieve optimal binding. This is explained in terms of a free-energy landscape that provides the relationship between free-energy, sequence folding propensity, and disorder. The observed "fuzzy" behavior is possible because of IDP flexibility and also because backbone and side-chain interactions are, to some extent, energetically decoupled allowing IDP to minimize energetically unfavorable folding.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201707853DOI Listing

Publication Analysis

Top Keywords

intrinsically disordered
8
sequence folding
8
idp
5
thermodynamic basis
4
basis fuzzy
4
fuzzy interaction
4
interaction intrinsically
4
disordered protein
4
protein intrinsically
4
disordered proteins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!