Mucopolysaccharidosis (MPS VI) or Maroteaux-Lamy syndrome is an autosomal recessive lysosomal storage disease caused by deficiency of the enzyme N-acetylgalactosamine 4-sulfatase or arylsulfatase B. It is involved in the degradation of glycosaminoglycans and characterized by a wide spectrum of clinical and genetic heterogeneity. So far, more than 150 mutations have been reported in the ARSB gene. Most of these mutations are either novel, private, or compound heterozygous making phenotype-genotype correlation as well as population screening difficult. The aim of our study is to determine the genotypes and phenotypes of MPS VI among the Saudi population at the Eastern Province of Saudi Arabia. The clinical data of all the patients seen and diagnosed with MPS VI (Maroteaux-Lamy syndrome) at the main hospital from January 1, 1983, to December 31, 2016, were reviewed. A total of 18 patients from 6 unrelated consanguineous families (first-cousin parents) were diagnosed with MPS VI during the defined 33 years. All of the affected patients displayed the severe phenotype of MPS VI. Only one genotype (c.753C > Gp.Y251X) was identified among five of the studied families. All of those families were inhabitants of Al-Hofuf area, but they descended from different clans. A second genotype (c270_274del5bp pc.91Afs*34) was detected in a single family who had originated from Abha area (the southern-west region of the country). This report demonstrated the homogeneity for both phenotype and genotype of our studied patients with MPS VI. This may eventually make selective asymptomatic carrier test and newborn screening highly feasible in this region of country.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752655 | PMC |
http://dx.doi.org/10.1007/s12687-017-0329-1 | DOI Listing |
Front Genet
January 2025
Genetics and Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Introduction: Mucopolysaccharidosis type VI (MPSVI), an autosomal recessive lysosomal storage disorder caused by pathogenic variants in gene. Usually, whole exome sequencing (WES) can identify these variants, and if WES failed to detect causative variants, whole-genome sequencing (WGS) may be considered to investigate deep intronic variations and structural alterations in patients.
Methods: Whole-exome sequencing (WES) and whole genome sequencing (WGS) were performed in a Chinese family having a boy with suspected diagnosis of MPS with macrocephaly, coarse facial features, broad forehead, thick lips, frontal bossing, craniosynostosis, blue spots, frequent upper respiratory infections, inguinal hernia, and dysostosis multiplex.
Rev Bras Ortop (Sao Paulo)
October 2024
Universidade Federal de Pernambuco, Recife, PE, Brasil.
This study evaluated and determined, through instrumented three-dimensional (3D) gait analysis, the kinetic, kinematic, and electromyographic profile of patients with mucopolysaccharidosis (MPS) IV and VI. This crossectional study included 11 patients treated at a rare diseases reference service and evaluated in a movement analysis laboratory. We collected clinical, physical examination, and kinetic, kinematic, and electromyographic data using a 3D movement system, from June 2020 to January 2021.
View Article and Find Full Text PDFAnn Biol Clin (Paris)
November 2024
Laboratory of hematology, CHU Brugmann LHUB-ULB site Horta 4, Pl Van Gehuchten, 1020 Brussels Belgium.
Mol Biol Rep
November 2024
Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Background: Mucopolysaccharidosis type VI (MPS VI), also known as Manteaux-Lamy syndrome, is an autosomal recessive lysosomal storage disorder caused by deficiency of the enzyme arylsulfatase B(ARSB). This syndrome is progressive and affects many tissues and organs, leading to inflammation and scarring. The classic clinical features of Maroteaux-Lamy syndrome are significant impairment of the osteoarticular system with dysostosis multiplex, short stature and motor dysfunction.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!