The purpose of this work was to investigate the influence of acid treatment on the surface properties and in vivo performance of titanium grade 5 (Ti6Al4V) alloy. Mini-implants with surface treatment were inserted into New Zealand rabbit tibia for 1, 4 and 8 weeks. SEM analysis showed intercommunicated micropores in acid treated samples. AFM showed micron and sub-micron roughness. The thickness of the titanium oxide layer increased with surface treatment, with a significant reduction of Al and V concentration. Acid treated implant removal torque was larger than without treatment. The implants/bone interface of acid treated implants showed dense adhered Ca/P particles with spreading osteoblasts after 4 weeks and newly formed bone trabeculae after 8 weeks. Analysis of rabbit blood that received treated implant showed lower Al and V contents at all times. Acid treatment improved surface morphology and mechanical stability, which allowed initial events of osseointegration, while Al-V ion release was reduced. GRAPHICAL ABTSRACT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-017-5977-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!