Mettl3-/Mettl14-mediated mRNA N-methyladenosine modulates murine spermatogenesis.

Cell Res

State Key Laboratory of Molecular Biology Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.

Published: October 2017

AI Article Synopsis

  • Spermatogenesis involves the transformation of diploid stem cells into haploid sperm and is tightly regulated at multiple levels of gene expression.
  • N-methyladenosine (mA) is identified as a significant epitranscriptomic marker that influences spermatogenesis by regulating gene expression and translational processes.
  • Deleting mA-related genes in germ cells disrupts spermatogenesis and translation of crucial genes, underlining the importance of mA in normal sperm development.

Article Abstract

Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce haploid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N-methyladenosine (mA), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive mA mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type A spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactivation of the mA RNA methyltransferase Mettl3 or Mettl14 with Vasa-Cre causes loss of mA and depletion of SSCs. mA depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Combined deletion of Mettl3 and Mettl14 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettl14 in advanced germ cells show normal spermatogenesis. The spermatids from double-mutant mice exhibit impaired translation of haploid-specific genes that are essential for spermiogenesis. This study highlights crucial roles of mRNA mA modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630681PMC
http://dx.doi.org/10.1038/cr.2017.117DOI Listing

Publication Analysis

Top Keywords

mettl3 mettl14
12
deletion mettl3
8
mettl14 advanced
8
advanced germ
8
germ cells
8
spermatogenesis
5
mettl3-/mettl14-mediated mrna
4
mrna n-methyladenosine
4
n-methyladenosine modulates
4
modulates murine
4

Similar Publications

Background: While TRPA1 serves as a therapeutic target for nociceptive pain, its role in acute visceral pain induced by uterine cervical dilation (UCD) remains an enigma. This study aims to elucidate the upstream and downstream mechanisms of TRPA1 in the context of UCD-induced acute visceral pain.

Methods: The UCD rats were administered with SAH (inhibitor of the METTL3-METTL14 complex) via intrathecal tubing.

View Article and Find Full Text PDF

Fine-tuning of gene expression through the Mettl3-Mettl14-Dnmt1 axis controls ESC differentiation.

Cell

January 2025

Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium. Electronic address:

The marking of DNA, histones, and RNA is central to gene expression regulation in development and disease. Recent evidence links N6-methyladenosine (mA), installed on RNA by the METTL3-METTL14 methyltransferase complex, to histone modifications, but the link between mA and DNA methylation remains scarcely explored. This study shows that METTL3-METTL14 recruits the DNA methyltransferase DNMT1 to chromatin for gene-body methylation.

View Article and Find Full Text PDF

N6-methyladenosine modification of host Hsc70 attenuates nucleopolyhedrovirus infection in the lepidopteran model insect Bombyx mori.

Int J Biol Macromol

January 2025

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China. Electronic address:

N6-methyladenosine (m6A) is the most prevalent internal modification on mRNA and plays critical roles in various biological processes including virus infection. It has been shown that m6A methylation is able to regulate virus proliferation and host innate immunity in mammals and plants, however, this antiviral defense in insects is largely unknown. Here we investigated function of m6A and its associated methyltransferases in nucleopolyhedrovirus (BmNPV) infection in silkworm.

View Article and Find Full Text PDF

Single-base mA epitranscriptomics reveals novel HIV-1 host interaction targets in primary CD4 T cells.

bioRxiv

January 2025

Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

-methyladenosine (mA) is the most prevalent cellular mRNA modification and plays a critical role in regulating RNA stability, localization, and gene expression. mA modification plays a vital role in modulating the expression of viral and cellular genes during HIV-1 infection. HIV-1 infection increases cellular RNA mA levels in many cell types, which facilitates HIV-1 replication and infectivity in target cells.

View Article and Find Full Text PDF

Mettl14 and Mettl3 Work Cooperatively to Regulate Retinal Development.

Cell Biochem Funct

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

N-methylenadenosine (mA) modification, the most abundant epitranscriptomic modification in eukaryotic mRNAs, has been shown to play crucial roles in regulating various aspects of mRNA metabolism and functions. In this study, we applied the Cre-Loxp conditional knockout system to investigate the role of the core components of the mA methyltransferase complex, METTL14 and METTL3, in retinal development. Our results showed that the double absence of Mettl14 and Mettl3 caused structural disturbance in the retina and prolonged the proliferation activity of retinal progenitor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!