Background: Mouth rinse that is natural, safe, cost-effective, readily available and culturally acceptable is required as an adjunct to routine tooth brushing to combat dental diseases. The aim of present study was to compare the effectiveness of salt water rinse with chlorhexidine mouth rinse in reducing dental plaque and oral microbial count.
Materials And Methods: The Minimum Inhibitory Concentration (MIC) of salt water against S. mutans, L.acidophilus, A. actinomycetemcomitans and P. gingivalis was determined by Macrobroth Dilution method. Thirty participants were randomly allocated into study group (salt water rinse) and control group (chlorhexidine rinse). Baseline DMFS, defs and plaque scores were recorded. Baseline unstimulated saliva samples were collected by spitting method. Oral prophylaxis was done after baseline sample collection. The participants were advised to rinse the allocated mouthrinse for 5 days under the supervision of co- investigator. Pre- rinse (after oral prophylaxis) and Post -rinse (5th day of mouthrinsing) plaque examination and salivary microbial analysis was done. The collected salivary samples were immediately transported and streaked on the respective media for microbial count.
Result: MIC of salt water was 0.7 M for S. mutans, A. actinomycetemcomitans and P. gingivalis and 0.8M for L. acidophilus. There was statistically significant reduction in the plaque scores, salivary S. mutans, L. acidophilus, A. actinomycetemcomitans and P. gingivalis count from baseline, pre-rinse to post-rinse in the study group (p=0.001) and control group (p=0.001). Salt water was as effective as chlorhexidine in reducing dental plaque (p = 0.19) and A. actinomycetemcomitans (p = 0.35) count and while chlorhexidine was superior against S. mutans (p = 0.001), L. acidophilus (p = 0.001) and P. gingivalis (p =0.001).
Conclusion: Salt water rinse can be used as adjunct to routine mechanical plaque control for prevention of oral diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/JISPPD.JISPPD_299_16 | DOI Listing |
Mater Horiz
January 2025
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
The availability of clean water is fundamental for maintaining sustainable environments and human ecosystems. Capacitive deionization offers a cost-effective, environmentally friendly, and energy-efficient solution to meet the rising demand for clean water. Electrode materials based on pseudocapacitive adsorption have attracted significant attention in capacitive deionization due to their relatively high desalination capacity.
View Article and Find Full Text PDFRecent Adv Food Nutr Agric
January 2025
Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.
Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.
Plant Commun
January 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea. Electronic address:
Roots absorb water and nutrients from the soil, support the plant's aboveground organs, and detect environmental changes, making them crucial targets for improving crop productivity. Roots are particularly sensitive to soil salinity, a major abiotic stress that poses a serious threat to global agriculture. In response to salt stress, plants suppress root meristem size, thus reducing root growth; however, the mechanisms underlying this growth restriction remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Petroleum and Gas Engineering Technology, Federal Polytechnic of Oil and Gas, Bonny-island, PMB 5027, Rivers State, Nigeria.
Chromium-based lignosulfonate (CrLS) deflocculants that are commonly used in water-based drilling muds (WBDMs) to deflocculate bentonites under high temperature (HT), high-pressure (HP), and high-salinity (HS) oil well drilling conditions have been found to contain heavy metals such as chromium, which is toxic and degrades rapidly. However, different ways of addressing this issue have been proffered, including the use of natural polymers such as starch, cellulose, or anionic inorganic agents such as sodium polyphosphates with little or no impact. Other lignosulfonate (LS)-based deflocculants, like sodium-based LS and bio-based LS, have shown a number of benefits, such as being better for the environment, more soluble and evenly distributed in WBDMs, more resistant to salt contamination, easily biodegradable, safe, and able to go through different chemical changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!