To investigate the effect of turmeric volatile oil (TVO) on the apoptosis and proliferation of human skin SCC A431 cells, A431 cells were incubated with different concentrations (5-80 mg•L⁻¹) of TVO in vitro.The proliferation and cell cycle were assessed by CCK8 assay. The change of morphology was observed with inverted microscope. Apoptosis was evaluated with AO/EB double staining and flow cytometry (FCM); cell cycle was analyzed with FCM .Western blot method was used to detect caspase-3 and caspase-9 protein expression. Results indicated that TVO has significant inhibitory effects on the growth of A431 cells in a dose dependent relationship, the difference between groups has statistically significant (P<0.05). TVO group compared with control group, concentrations in cells shrivel and broken phenomenon, cell apoptosis rate increased, and a dose dependent and increased the expression of caspase-3 and caspase-9. The experiment results suggested that TVO could restrain skin squamous carcinoma A431 cells proliferation, and induce its apoptosis. The mechanism may be related to increase the expression of caspase-3 and caspase-9.

Download full-text PDF

Source
http://dx.doi.org/10.4268/cjcmm20161523DOI Listing

Publication Analysis

Top Keywords

a431 cells
12
turmeric volatile
8
volatile oil
8
human skin
8
skin scc
8
scc a431
8
cell cycle
8
[effect turmeric
4
oil proliferation
4
proliferation apoptosis
4

Similar Publications

X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.

View Article and Find Full Text PDF

Modern radiotherapy utilizes a broad range of sources of ionizing radiation, both low-dose-rate (LDR) and high-dose-rate (HDR). However, the mechanisms underlying specific dose-rate effects remain unclear, especially for corpuscular radiation. To address this issue, we have irradiated human epidermoid carcinoma A431 cells under LDR and HDR regimes.

View Article and Find Full Text PDF

Effective treatment of squamous cell carcinoma (SCC) poses challenges due to intrinsic drug resistance and limited drug penetration into tumor cells. Nanoparticle-based drug delivery systems have emerged as a promising approach to enhance therapeutic efficacy; however, they often face hurdles such as inadequate cellular uptake and rapid lysosomal degradation. This study explores the potential of iontophoresis to augment the efficacy of liposome and immunoliposome-based drug delivery systems for SCC treatment.

View Article and Find Full Text PDF

Cutaneous squamous cell carcinoma (cSCC) is a common type of cutaneous cancer globally. M2 macrophage-derived exosomes (M2 exosomes) facilitate the development of cancer. Ferroptosis, a newly uncovered form of cell death, is linked to cancer progression.

View Article and Find Full Text PDF

Introduction: Cancer has emerged as one of the leading causes of fatality all over the world. Phytoconstituents are being studied for their synergistic effects, which include disease prevention by altering molecular pathways and immunomodulation without side effects. The present experiment aims to explore the cancer preventive activities of Linn leaves extract in skin cancer cell lines (A431) and colon cancer cell lines (COLO 320DM)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!