Food nitrogen footprint reductions related to a balanced Japanese diet.

Ambio

Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan.

Published: April 2018

Dietary choices largely affect human-induced reactive nitrogen accumulation in the environment and resultant environmental problems. A nitrogen footprint (NF) is an indicator of how an individual's consumption patterns impact nitrogen pollution. Here, we examined the impact of changes in the Japanese diet from 1961 to 2011 and the effect of alternative diets (the recommended protein diet, a pescetarian diet, a low-NF food diet, and a balanced Japanese diet) on the food NF. The annual per capita Japanese food NF has increased by 55% as a result of dietary changes since 1961. The 1975 Japanese diet, a balanced omnivorous diet that reportedly delays senescence, with a protein content similar to the current level, reduced the current food NF (15.2 kg N) to 12.6 kg N, which is comparable to the level in the recommended protein diet (12.3 kg N). These findings will help consumers make dietary choices to reduce their impacts on nitrogen pollution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857260PMC
http://dx.doi.org/10.1007/s13280-017-0944-4DOI Listing

Publication Analysis

Top Keywords

japanese diet
16
diet
9
nitrogen footprint
8
balanced japanese
8
dietary choices
8
nitrogen pollution
8
recommended protein
8
protein diet
8
diet balanced
8
food
5

Similar Publications

Background And Aims: Maternal obesity increases the risk of the paediatric form of metabolic dysfunction-associated steatotic liver disease (MASLD), affecting up to 30% of youth, but the developmental origins remain poorly understood.

Methods: Using a Japanese macaque model, we investigated the impact of maternal Western-style diet (mWSD) or chow diet followed by postweaning WSD (pwWSD) or chow diet focusing on bile acid (BA) homeostasis and hepatic fibrosis in livers from third-trimester fetuses and 3-year-old juvenile offspring.

Results: Juveniles exposed to mWSD had increased hepatic collagen I/III content and stellate cell activation in portal regions.

View Article and Find Full Text PDF

Background: Metabolic acidosis caused by acidogenic diets increases muscle catabolism. High acidogenic diets can increase muscle loss in older adults; however, their association with functional outcomes remains unclear.

Objectives: To investigate whether high acidogenic diets increase the incidence of disability.

View Article and Find Full Text PDF

Japanese quails () are sensitive to zinc (Zn) deficiency, a mineral essential for growth, development, and bone health. This study evaluated the effects of different levels of Zn in the diet on zootechnical performance, organ and carcass weight, and tibial breakage resistance in quails from 1 to 42 days of age. A 5 × 2 factorial design was used, consisting of five Zn levels (30, 60, 90, 120, and 150 mg/kg) and two thermal environments (thermal comfort and heat stress), with five replicates of 10 birds per treatment.

View Article and Find Full Text PDF

The prevalence of hypertension in Japan remains high, owing to the high salt content of the typical Japanese diet. Dairy-based foods may reduce blood pressure and hypertension risk. However, dairy consumption is low in Japan, and the relationships between dairy intake and blood pressure or the mechanisms by which dairy products affect blood pressure are not fully understood.

View Article and Find Full Text PDF

This longitudinal observational study aimed to evaluate whether cardiometabolic factors and dietary characteristics are determinants of metabolic dysfunction-associated steatotic liver disease (MASLD) in non-obese individuals (body mass index [BMI] < 25 kg/m²). The study was conducted at the Japanese Red Cross Society Kyoto Daiichi Hospital. Clinical data were longitudinally recorded at annual health checks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!