Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The concept of isoreticular chemistry has become a core principle in metal-organic framework (MOF) materials. Isoreticular chemistry has shown that organic ligands of different sizes, but with a common geometry/symmetry can be used to generate MOFs of related topologies, but with expanded pore sizes and volumes. In this report, polymer-MOF hybrid materials (polyMOFs) with a UiO (UiO = University of Oslo) architecture are shown to adhere to the principle of isoreticular expansion, generating polyMOFs with large surface areas and enhanced stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cc04222a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!