Progesterone containing nanoparticles constituted of tristearin or tristearin in association with caprylic-capric triglyceride were produced in a lab scale by ultrasound homogenization and in a pilot scale by high pressure homogenization. A study was conducted to select the pressure to be used in order to obtain homogenously sized nanoparticles. The Dialysis method was performed to mimic subcutaneous administration of lipid nanoparticles. Mathematical analyses of the results were conducted to understand and compare the drug release mechanisms. A human in vivo study, based on tape stripping, was conducted to investigate the performance of nanoparticles as progesterone skin delivery systems. Tape stripped was analyzed by light microscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587877 | PMC |
http://dx.doi.org/10.1016/j.dib.2017.08.033 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
Although neo-antigen mRNA vaccines are promising for personalized cancer therapy, their effectiveness is often limited by the immunosuppressive tumor microenvironment (TME). The adenosine AA receptor (AAR) inhibits dendritic cell (DC) function and weakens antitumor T cell responses through hypoxia-driven mechanisms within the TME. This review explores a novel strategy combining neo-antigen mRNA vaccines with AAR antagonists (AARi).
View Article and Find Full Text PDFInt J Pharm
January 2025
Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China. Electronic address:
Lipid nanoparticles (LNPs) are among the most promising non-viral mRNA delivery systems for gene therapeutic applications. However, the in vivo delivery of LNP-mRNA remains challenging due to multiple intrinsic barriers that hinder LNPs from reaching their target cells. In this study, we sought to enhance LNP delivery by manipulating intrinsic regulatory mechanisms involved in their metabolism.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
In the evolving landscape of nanotechnology and pharmaceuticals, lipid nanostructures have emerged as pivotal areas of research due to their unique ability to mimic biological membranes and encapsulate active molecules. These nanostructures offer promising avenues for drug delivery, vaccine development, and diagnostic applications. This comprehensive review explores the complex mechanisms underlying the formation and stability of various lipid nanostructures, including lipid liquid crystalline nanoparticles and solid lipid nanoparticles.
View Article and Find Full Text PDFTher Deliv
January 2025
Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia.
Aim: Abemaciclib (ABE) is an anticancer drug that suffers from low bioavailability and multidrug resistance. This study aims to develop ABE-loaded solid lipid nanoparticles (ABE-SLNs), which will enhance drug solubility and lead to increased cellular uptake and enhanced cytotoxicity when delivering tumor cells.
Methods: Melt emulsification followed by ultrasonication was used as a method of preparation and Quality-by-Design (QbD) was utilized to optimize ABE-SLNs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!