Background: Source material used to fill calvarial defects includes autologous bones and synthetic alternatives. While autologous bone is preferable to synthetic material, autologous reconstruction is not always feasible due to defect size, unacceptable donor-site morbidity, and other issues. Today, advanced three-dimensional (3D) printing techniques allow for fabrication of titanium implants customized to the exact need of individual patients with calvarial defects. In this report, we present three cases of calvarial reconstructions using 3D-printed porous titanium implants.
Methods: From 2013 through 2014, three calvarial defects were repaired using custommade 3D porous titanium implants. The defects were due either to traumatic subdural hematoma or to meningioma and were located in parieto-occipital, fronto-temporo-parietal, and parieto-temporal areas. The implants were prepared using individual 3D computed tomography (CT) data, Mimics software, and an electron beam melting machine. For each patient, several designs of the implant were evaluated against 3D-printed skull models. All three cases had a custom-made 3D porous titanium implant laid on the defect and rigid fixation was done with 8 mm screws.
Results: The custom-made 3D implants fit each patient's skull defect precisely without any dead space. The operative site healed without any specific complications. Postoperative CTs revealed the implants to be in correct position.
Conclusion: An autologous graft is not a feasible option in the reconstruction of large calvarial defects. Ideally, synthetic materials for calvarial reconstruction should be easily applicable, durable, and strong. In these aspects, a 3D titanium implant can be an optimal source material in calvarial reconstruction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556788 | PMC |
http://dx.doi.org/10.7181/acfs.2015.16.1.11 | DOI Listing |
PLoS One
January 2025
Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.
Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.
Under benign conditions, bone tissue can regenerate itself without external intervention. However, this regenerative capacity can be compromised by various factors, most importantly related with the extent of the injury. Critical-sized defects, exceeding the body's natural healing ability, demand the use of temporary or permanent devices like artificial joints or bone substitutes.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Gaziantep University, Gaziantep, Turkey.
Background: This study evaluates the effects of ozone on hard and soft tissue healing when a free tissue flap is used to close wound areas lacking primary closure over autogenous grafted sites.
Methods: In our study, 24 male Wistar rats were divided into four groups: two control groups and two ozone-treated groups. All rats underwent the same surgical procedure.
J Biomed Mater Res A
January 2025
Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.
View Article and Find Full Text PDFInjury
January 2025
University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, SP, Brazil; Division of Dermatology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 05508-060, Brazil; Graduate Program of Orthodontics, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, SP, Brazil. Electronic address:
The repair of critical-sized bone defects represents significant clinical challenge. An alternative approach is the use of 3D composite scaffolds to support bone regeneration. Hydroxyapatite (HA) and tri-calcium phosphate (β-TCP), combined with polycaprolactone (PCL), offer promising mechanical resistance and biocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!