Cleavage of 3'-terminal adenosine by archaeal ATP-dependent RNA ligase.

Sci Rep

Department of Biological Sciences, State University of New York, Buffalo, NY, 14260, United States of America.

Published: September 2017

AI Article Synopsis

  • MthRnl is an enzyme that connects RNA strands by forming bonds between their ends and can convert RNA with a 3'-phosphate end into a different structure.
  • The enzyme also removes adenosine from the end of RNA, a process requiring metal ions and specific molecular conditions.
  • These properties indicate that MthRnl may play a role in managing certain types of RNA, influencing how they function and interact in biological processes.

Article Abstract

Methanothermobacter thermoautotrophicus RNA ligase (MthRnl) catalyzes formation of phosphodiester bonds between the 5'-phosphate and 3'-hydroxyl termini of single-stranded RNAs. It can also react with RNA with a 3'-phosphate end to generate a 2',3'-cyclic phosphate. Here, we show that MthRnl can additionally remove adenosine from the 3'-terminus of the RNA to produce 3'-deadenylated RNA, RNA(3'-rA). This 3'-deadenylation activity is metal-dependent and requires a 2'-hydroxyl at both the terminal adenosine and the penultimate nucleoside. Residues that contact the ATP/AMP in the MthRnl crystal structures are essential for the 3'-deadenylation activity, suggesting that 3'-adenosine may occupy the ATP-binding pocket. The 3'-end of cleaved RNA(3'-rA) consists of 2',3'-cyclic phosphate which protects RNA(3'-rA) from ligation and further deadenylation. These findings suggest that ATP-dependent RNA ligase may act on a specific set of 3'-adenylated RNAs to regulate their processing and downstream biological events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599603PMC
http://dx.doi.org/10.1038/s41598-017-11693-0DOI Listing

Publication Analysis

Top Keywords

rna ligase
12
atp-dependent rna
8
2'3'-cyclic phosphate
8
3'-deadenylation activity
8
rna
6
cleavage 3'-terminal
4
3'-terminal adenosine
4
adenosine archaeal
4
archaeal atp-dependent
4
ligase methanothermobacter
4

Similar Publications

An enzyme with strong single-stranded DNA (ssDNA) ligation activity would be advantageous for many molecular biology applications. However, currently available enzymes exhibit only limited activity. Here, we identified an enzyme with strong ssDNA ligation activity upon searching the databases for proteins homologous to TS2126 RNA ligase, the known enzyme with the highest yet limited ssDNA ligation activity.

View Article and Find Full Text PDF

Effective modulation of gene expression in plants is achievable through tools like CRISPR and RNA interference, yet methods for directly modifying endogenous proteins remain lacking. Here, we identify the E3 ubiquitin ligase E3TCD1 and develope a Targeted Condensation-prone-protein Degradation (TCD) strategy. The X-E3TCD1 fusion protein acts as a genetically engineered degrader, selectively targeting endogenous proteins prone to condensation.

View Article and Find Full Text PDF

Micropeptide hSPAR regulates glutamine levels and suppresses mammary tumor growth via a TRIM21-P27KIP1-mTOR axis.

EMBO J

January 2025

Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

mTOR plays a pivotal role in cancer growth control upon amino acid response. Recently, CDK inhibitor P27KIP1 has been reported as a noncanonical inhibitor of mTOR signaling in MEFs, via unclear mechanisms. Here, we find that P27KIP1 degradation via E3 ligase TRIM21 is inhibited by human micropeptide hSPAR through its C-terminus (hSPAR-C), causing P27KIP1's cytoplasmic accumulation in breast cancer cells.

View Article and Find Full Text PDF

Characterization of SARS-CoV-2 Entry Genes in Skeletal Muscle and Impacts of In Vitro Versus In Vivo Infection.

J Cachexia Sarcopenia Muscle

February 2025

Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.

Background: COVID-19 has been associated with both respiratory (diaphragm) and non-respiratory (limb) muscle atrophy. It is unclear if SARS-CoV-2 infection of skeletal muscle plays a role in these changes. This study sought to: 1) determine if cells comprising skeletal muscle tissue, particularly myofibres, express the molecular components required for SARS-CoV-2 infection; 2) assess the capacity for direct SARS-CoV-2 infection and its impact on atrophy pathway genes in myogenic cells; and 3) in an animal model of COVID-19, examine the relationship between viral infection of skeletal muscle and myofibre atrophy within the diaphragm and limb muscles.

View Article and Find Full Text PDF

Malignant neoplasms arise within a region of chronic inflammation caused by tissue injuries. Inflammation is a key factor involved in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. Interleukin-1 (IL-1) plays critical functions in tumor development with influencing the tumor microenvironment and promoting cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!