In previous studies, the β-blocker carvedilol inhibited EGF-induced epidermal cell transformation and chemical carcinogen-induced mouse skin hyperplasia. As exposure to ultraviolet (UV) radiation leads to skin cancer, the present study examined whether carvedilol can prevent UV-induced carcinogenesis. Carvedilol absorbs UV like a sunscreen; thus, to separate pharmacological from sunscreen effects, 4-hydroxycarbazole (4-OHC), which absorbs UV to the same degree as carvedilol, served as control. JB6 P cells, an established epidermal model for studying tumor promotion, were used for evaluating the effect of carvedilol on UV-induced neoplastic transformation. Both carvedilol and 4-OHC (1 μmol/L) blocked transformation induced by chronic UV (15 mJ/cm) exposure for 8 weeks. However, EGF-mediated transformation was inhibited by only carvedilol but not by 4-OHC. Carvedilol (1 and 5 μmol/L), but not 4-OHC, attenuated UV-induced AP-1 and NF-κB luciferase reporter activity, suggesting a potential anti-inflammatory activity. In a single-dose UV (200 mJ/cm)-induced skin inflammation mouse model, carvedilol (10 μmol/L), applied topically after UV exposure, reduced skin hyperplasia and the levels of cyclobutane pyrimidine dimers, IL1β, IL6, and COX-2 in skin. In SKH-1 mice exposed to gradually increasing levels of UV (50-150 mJ/cm) three times a week for 25 weeks, topical administration of carvedilol (10 μmol/L) after UV exposure increased tumor latency compared with control (week 18 vs. 15), decreased incidence and multiplicity of squamous cell carcinomas, while 4-OHC had no effect. These data suggest that carvedilol has a novel chemopreventive activity and topical carvedilol following UV exposure may be repurposed for preventing skin inflammation and cancer. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/1940-6207.CAPR-17-0132DOI Listing

Publication Analysis

Top Keywords

carvedilol
13
carvedilol μmol/l
12
ultraviolet radiation
8
skin hyperplasia
8
carvedilol 4-ohc
8
skin inflammation
8
skin
7
exposure
5
4-ohc
5
topically applied
4

Similar Publications

Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization.

Pharmaceutics

December 2024

Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.

Background/objectives: Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous dosage forms with high drug loading. When the powder mixture is exposed to elevated temperatures during SLS printing, the active ingredients can be converted from the crystalline to the amorphous state, which can be used as a strategy to improve the dissolution rate and bioavailability of poorly soluble drugs. This study investigates the potential application of SLS 3D printing for the fabrication of tablets containing the poorly soluble drug carvedilol with the aim of improving the dissolution rate of the drug by forming an amorphous form through the printing process.

View Article and Find Full Text PDF

Hypoxia/reoxygenation (HR) often occurs under cardiac pathological conditions, and HR-induced oxidative stress usually leads to cardiomyocyte damage. Carvedilol, a non-selective β-blocker, is used clinically to treat cardiac ischemia diseases. Moreover, Carvedilol has also been reported to have an antioxidant ability by reducing lipid peroxidation.

View Article and Find Full Text PDF

TERT de novo mutation-associated dyskeratosis congenita and porto-sinusoidal vascular disease: a case report.

J Med Case Rep

January 2025

Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, 130021, China.

Background: Dyskeratosis congenita is a rare genetic disease due to telomere biology disorder and characterized by heterogeneous clinical manifestations and severe complications. "Porto-sinusoidal vascular disease" has been recently proposed, according to new diagnostic criteria, to replace the term "idiopathic non-cirrhotic portal hypertension." TERT plays an important role in telomeric DNA repair and replication.

View Article and Find Full Text PDF

Background: Evidence-based beta-blockers are essential in managing heart failure with reduced ejection fraction (HFrEF) and are known to improve cardiovascular outcomes. Despite robust nascent guideline recommendations, studies indicate that beta-blockers are often underutilized or administered below target doses. This shivery issue is particularly relevant in Ethiopia, where comprehensive evaluations of beta-blocker utilization and dosing practices are limited.

View Article and Find Full Text PDF

Chronotropic effects of milrinone in a guinea pig ex vivo model: a pilot study to screen for new mechanisms of action.

J Cardiovasc Pharmacol

January 2025

Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.

Positive inotropic responses upon administration of milrinone, an inhibitor of the phosphodiesterase enzyme (PDE), involve a well-pronounced positive chronotropic effect. Here we tested whether milrinone evokes this chronotropic response solely by PDE inhibition or by a concerted action that involve additional pharmacological targets. Milrinone stimulated increases in heart rate were studied in right atrial preparations of guinea pig in the presence or absence of inhibitors of putative ancillary molecular pathways or ion channels: i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!