miRNAs are essential regulators of cell identity, yet their role in early embryo development in plants remains largely unexplored. To determine the earliest stage at which miRNAs act to promote pattern formation in embryogenesis, we examined a series of mutant alleles in the Arabidopsis thaliana miRNA biogenesis enzymes DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1). Cellular and patterning defects were observed in dcl1, se and hyl1 embryos from the zygote through the globular stage of embryogenesis. To identify miRNAs that are expressed in early embryogenesis, we sequenced mRNAs from globular stage Columbia wild type (wt) and se-1 embryos, and identified transcripts potentially corresponding to 100 miRNA precursors. Considering genome location and transcript increase between wt and se-1, 39 of these MIRNAs are predicted to be bona fide early embryo miRNAs. Among these are conserved miRNAs such as miR156, miR159, miR160, miR161, miR164, miR165, miR166, miR167, miR168, miR171, miR319, miR390 and miR394, as well as miRNAs whose function has never been characterized. Our analysis demonstrates that miRNAs promote pattern formation beginning in the zygote, and provides a comprehensive dataset for functional studies of individual miRNAs in Arabidopsis embryogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2017.09.009 | DOI Listing |
PLoS One
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang, China.
Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China.
Engineered extracellular vesicles play an increasingly important role in the treatment of spinal cord injury. In order to prepare more effective engineered extracellular vesicles, we biologically modified M2 microglia. Angiopep-2 (Ang2) is an oligopeptide that can target the blood-brain barrier.
View Article and Find Full Text PDFCells
January 2025
School of Medicine, Newgiza University (NGU), Giza 12577, Egypt.
Meis1 is a transcription factor involved in numerous functions including development and proliferation and has been previously shown to harness cell cycle progression. In this study, we used in silico analysis to predict that miR-499-5p targets Meis1 and that Malat1 sponges miR-499-5p. For the first time, we demonstrated that the overexpression of miR-499-5p led to the downregulation of Meis1 mRNA and protein in C166 cells by directly binding to its 3'UTR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!