The breaking of RNA strands by 2'-O-transphosphorylation is a ubiquitous reaction in biology, and enzymes that catalyze this reaction play key roles in RNA metabolism. The mechanisms of 2'-O-transphosphorylation in solution are relatively well studied, but complex and can involve different transition states depending on how the reaction is catalyzed. Because of this complexity and the lack of experimental information on transition-state structure, pinning down the chemical details of enzyme-catalyzed RNA strand cleavage has been difficult. Kinetic isotope effects (KIEs) provide information about changes in bonding as a reaction proceeds from ground state to transition state, and therefore they provide a powerful tool for revealing mechanistic detail. Application of kinetic isotope analyses to RNA 2'-O-transphosphorylation faces three fundamental challenges: synthesis of RNA substrate isotopomers with O substitutions at the 2'-O, 5'-O and nonbridging phosphoryl oxygens; determination of the O/O ratios in the residual unreacted substrate or product RNAs; and analyzing these data to allow calculation of the KIEs for use in evaluating different mechanistic scenarios. In this chapter, we outline methods for surmounting these challenges for solution RNA 2'-O-transphosphorylation reactions, and we describe their initial application to understand nonenzymatic solution reactions and reactions catalyzed by the enzyme ribonuclease A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2017.07.017 | DOI Listing |
Small
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, 110016, India.
Crystalline γ-FeO(OH) dominantly possessing ─OH terminals (𝛾-FeO(OH)), polycrystalline γ-FeO(OH) containing multiple ─O, ─OH, and Fe terminals (𝛾-FeO(OH)), and α-FeO majorly containing ─O surface terminals are used as electrocatalysts to study the effect of surface terminals on electrocatalytic nitrate reduction reaction (eNORR) selectivity and stabilization of reaction intermediates. Brunauer-Emmett-Teller analysis and electrochemically determined surface area suggest a high active surface area of 117.79 m g (ECSA: 0.
View Article and Find Full Text PDFResearch (Wash D C)
January 2024
School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
Solar-driven CO photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized CsSbBr nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO reduction rate (45.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Electronic address:
Reductions in polycyclic aromatic hydrocarbon (PAH) concentrations have been observed during frying. However, transformation mechanisms of PAHs remain unclear. We hypothesize that PAHs may be oxidized into oxygenated polycyclic aromatic hydrocarbons (OPAHs) and other derivatives during frying.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
Carbon-14 (C-14) has been a major contributor to the human radioactive exposure dose, as it is released into the environment from the nuclear industry in larger quantities compared to other radionuclides. This most abundant nuclide enters the biosphere as organically bound C-14 (OBC-14), posing a potential threat to public health. Yet, it remains unknown how this relatively low radiotoxic nuclide induces health risks via chemical effects, such as isotope effect.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, IIT Gandhinagar, Palaj, Gujarat, 382355, India.
The second 3d-transition metal incorporation in Ni-(oxy)hydroxide has a drastic effect on alkaline OER and alcohol dehydrogenation reactivity. While Mn incorporation suppresses the alkaline OER, it greatly improves the alcohol dehydrogenation reactivity. A complete reversal of reactivity is obtained when Fe is incorporated, which shows better performance for alkaline OER with poor alcohol dehydrogenation reactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!