Electrolyzed water has significant disinfection effects, can comply with food safety regulations, and is environmental friendly. We investigated the effects of immersion depth of electrodes, stirring, electrode size, and electrode gap on the properties and chlorine generation efficiency of electrolyzing seawater and its storage stability. Results indicated that temperature and oxidation-reduction potential (ORP) of the seawater increased gradually, whereas electrical conductivity decreased steadily in electrolysis. During the electrolysis process, pH values and electric currents also decreased slightly within small ranges. Additional stirring or immersing the electrodes deep under the seawater significantly increased current density without affecting its electric efficiency and current efficiency. Decreasing electrode size or increasing electrode gap decreased chlorine production and electric current of the process without affecting its electric efficiency and current efficiency. Less than 35% of chlorine in the electrolyzed seawater was lost in a 3-week storage period. The decrement trend leveled off after the 1 week of storage. The electrolyzing system is a convenient and economical method for producing high-chlorine seawater, which will have high potential applications in agriculture, aquaculture, or food processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345466 | PMC |
http://dx.doi.org/10.1016/j.jfda.2015.06.007 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
Cyclic voltammetry (CV) can be applied as a reliable method for the determination of chloride ions in a range from several to a couple hundred (about 200) ppm. Since the standard potential of chloride ion/gaseous chlorine is 1.36 V vs.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, commercial acid systems in oilfields present problems such as the uncontrollable release effect, high costs, and significant pollution.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 10120, Thailand.
A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.
View Article and Find Full Text PDFChemosphere
January 2025
University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:
The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.
View Article and Find Full Text PDFACS EST Air
September 2024
Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States.
During use of sodium hypochlorite bleach, gas-phase hypochlorous acid (HOCl) and chlorine (Cl) are released, which can react with organic compounds present in indoor air. Reactivity between HOCl/Cl and limonene, a common constituent of indoor air, has been observed. The purpose of this study was to characterize the chemical species generated from gas-phase reactions between HOCl/Cl and limonene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!