A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The analytical determination and electrochemiluminescence behavior of amoxicillin. | LitMetric

A novel electrochemiluminescence (ECL) luminophor of amoxicillin was studied and found to generate ECL following the oxidation or reduction of amoxicillin. The amoxicillin oxidation state was also found to eliminate the reduction state, generating ECL. When solutions of amoxicillin were scanned between +1.5 V and -1.0 V with a graphite electrode in the presence of cetyltrimethyl ammonium bromide using KC1 as the supporting electrolyte, ECL emissions were observed at potentials of -0.7 V and +0.5 V. The ECL intensity at -0.7 V was enhanced by HO. Based on these findings, an ECL method for the determination of the amoxicillin concentration is proposed. The ECL intensities were linear with amoxicillin concentrations in the range of 1.8 × 10 g/mL to 2.5 × 10 g/mL, and the limit of detection (signal/noise = 3) was 5 × 10 g/mL. The florescence of amoxicillin had the greatest emission intensity in a neutral medium, with the emission wavelength dependent on the excitation wavelength. The experiments on the ECL mechanism for amoxicillin found that the electrochemical oxidation products of dissolved oxygen and active oxygen species contributed to the ECL process. The data also suggest that the hydroxyl group of amoxicillin contributed to its ECL emission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345437PMC
http://dx.doi.org/10.1016/j.jfda.2015.09.002DOI Listing

Publication Analysis

Top Keywords

amoxicillin
10
ecl
10
contributed ecl
8
analytical determination
4
determination electrochemiluminescence
4
electrochemiluminescence behavior
4
behavior amoxicillin
4
amoxicillin novel
4
novel electrochemiluminescence
4
electrochemiluminescence ecl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!