A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A zebrafish model of X-linked adrenoleukodystrophy recapitulates key disease features and demonstrates a developmental requirement for abcd1 in oligodendrocyte patterning and myelination. | LitMetric

AI Article Synopsis

  • X-linked adrenoleukodystrophy (ALD) is a severe genetic disease linked to the ABCD1 gene, affecting the brain and nerves due to impaired myelin function.
  • Researchers created zebrafish models with mutations in the abcd1 gene that mimic human ALD, showing similarities like increased levels of very long chain fatty acids (VLCFAs) and disrupted central nervous system development.
  • These zebrafish mutants exhibited motor function issues and reduced survival rates, but introducing human ABCD1 in oligodendrocytes helped prevent cell death, providing insights into disease progression and potential therapies.

Article Abstract

X-linked adrenoleukodystrophy (ALD) is a devastating inherited neurodegenerative disease caused by defects in the ABCD1 gene and affecting peripheral and central nervous system myelin. ABCD1 encodes a peroxisomal transmembrane protein required for very long chain fatty acid (VLCFA) metabolism. We show that zebrafish (Danio rerio) Abcd1 is highly conserved at the amino acid level with human ABCD1, and during development is expressed in homologous regions including the central nervous system and adrenal glands. We used TALENs to generate five zebrafish abcd1 mutant allele lines introducing premature stop codons in exon 1, as well as obtained an abcd1 allele from the Zebrafish Mutation Project carrying a point mutation in a splice donor site. Similar to patients with ALD, zebrafish abcd1 mutants have elevated VLCFA levels. Interestingly, we found that CNS development of the abcd1 mutants is disrupted, with hypomyelination in the spinal cord, abnormal patterning and decreased numbers of oligodendrocytes, and increased cell death. By day of life five abcd1 mutants demonstrate impaired motor function, and overall survival to adulthood of heterozygous and homozygous mutants is decreased. Expression of human ABCD1 in oligodendrocytes rescued apoptosis in the abcd1 mutant. In summary, we have established a zebrafish model of ALD that recapitulates key features of human disease pathology and which reveals novel features of underlying disease pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886093PMC
http://dx.doi.org/10.1093/hmg/ddx249DOI Listing

Publication Analysis

Top Keywords

abcd1
12
abcd1 mutants
12
zebrafish model
8
x-linked adrenoleukodystrophy
8
recapitulates key
8
central nervous
8
nervous system
8
human abcd1
8
zebrafish abcd1
8
abcd1 mutant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!