Background: The transforming growth factor (TGF)-β pathway is a well-described inducer of immunosuppression and can act as an oncogenic factor in advanced tumors. Several preclinical and clinical studies show that the TGF-β pathway can be considered a promising molecular target for cancer therapy. The human genome has three TGF-β isoforms and not much is known about the oncogenic response to each of the isoforms. Here, we studied the antitumor response to ISTH0047, a recently developed locked nucleic acid-modified antisense oligonucleotide targeting TGF-β2.
Materials And Methods: We have studied the anticancer response to ISTH0047 using gymnotic delivery in tumor cell cultures and in in vivo preclinical orthotopic mouse models for primary tumors (breast and kidney tumors) and lung metastasis.
Results: We observed that ISTH0047 is able to significantly reduce TGF-β2 mRNA and protein levels without altering the levels of TGF-β1 and TGF-β3. ISTH0047 prevented lung metastasis in syngeneic orthotopic renal cell carcinoma (RENCA) and breast cancer (4T1) tumor models. In addition, using an orthotopic xenograft model of a lung cancer cell line (CRL5807) that mainly expresses TGF-β2, we observed that ISTH0047 had an important effect on the lung microenvironment inhibiting the growth of lung lesions. ISTH0047 treatment re-educated macrophages in the lung parenchyma to express the tumor-suppressive factor, CD86.
Conclusion: Overall, our data point to TGF-β2 as a therapeutic target and ISTH0047 as a novel anticancer drug to prevent lung metastasis by impacting on the tumor niche, in part, through the induction of CD86 in tumor-associated macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annonc/mdx314 | DOI Listing |
Metastasis is the leading cause of mortality in breast cancer, with lung metastasis being particularly detrimental. Identification of the processes determining metastatic organotropism could enable the development of approaches to prevent and treat breast cancer metastasis. Here, we found that lung-tropic and non-lung-tropic breast cancer cells differ in their response to sialic acids, affecting the sialylation of surface proteins.
View Article and Find Full Text PDFPancreatic cancer (PC) is one of the leading causes of cancer deaths, associated with a high risk of metastasis and mortality. The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is highly expressed in multiple types of tumour tissues and may be associated with the growth of PC cells. In this study, we aimed to assess the role and possible mechanisms of MALAT1 in PC progression.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China.
Background: Plasma protein has gained prominence in the non-invasive predicting of lung cancer. We utilised Zeolite Zotero NaY-based plasma proteomics to investigate its potential for multiple event predicting, including lung cancer diagnosis (task #1), lymph node metastasis detection (task #2) and tumour‒node‒metastasis (TNM) staging (task #3).
Methods: A total of 4703 plasma proteins were quantified from 241 participants based on a prospective cohort of 2757 participants.
Cancer Manag Res
January 2025
Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China.
Purpose: (Tumor-educated platelets) TEPs have emerged as active players in all steps of tumorigenesis, confrontation of platelets with tumor cells via transfer of tumor-associated biomolecules and results in the sequestration of such biomolecules. The current study was aimed to examine whether TEPs lncRNA-STARD4-AS1 and ELOA-AS1 might be potential biomarkers for NSCLC.
Materials And Methods: TEPs were obtained by low-speed centrifugation.
Int J Biol Sci
January 2025
The People's Hospital of Gaozhou, Gaozhou 525200, China.
Cyclin D3 (CCND3), a member of the cyclin D family, is known to promote cell cycle transition. In this study, we found that CCND3 was downregulated in cisplatin-resistant (-diamminedichloroplatinum, DDP) lung adenocarcinoma (LUAD) cells. The loss of CCND3 indeed impeded cell cycle transition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!