Several microsatellite-expansion diseases are characterized by the accumulation of RNA foci and RAN proteins, raising the possibility of a mechanistic connection. We explored this question using myotonic dystrophy type 2, a multisystemic disease thought to be primarily caused by RNA gain-of-function effects. We demonstrate that the DM2 CCTG⋅CAGG expansion expresses sense and antisense tetrapeptide poly-(LPAC) and poly-(QAGR) RAN proteins, respectively. In DM2 autopsy brains, LPAC is found in neurons, astrocytes, and glia in gray matter, and antisense QAGR proteins accumulate within white matter. LPAC and QAGR proteins are toxic to cells independent of RNA gain of function. RNA foci and nuclear sequestration of CCUG transcripts by MBNL1 is inversely correlated with LPAC expression. These data suggest a model that involves nuclear retention of expansion RNAs by RNA-binding proteins (RBPs) and an acute phase in which expansion RNAs exceed RBP sequestration capacity, are exported to the cytoplasm, and undergo RAN translation. VIDEO ABSTRACT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951173 | PMC |
http://dx.doi.org/10.1016/j.neuron.2017.08.039 | DOI Listing |
Zh Nevrol Psikhiatr Im S S Korsakova
December 2024
Republican Scientific and Practical Center of Neurology and Neurosurgery, Minsk, Belarus.
Objective: To analyze the results of nocturnal breathing parameters during sleep based on nocturnal pulse oximetry and to study of characteristics of external respiration in genetically confirmed patients with dystrophic myotonia (DM).
Material And Methods: The subjects of the study were patients with genetically confirmed DM types 1 and 2 who were hospitalized in the neurological departments of the Republican Scientific and Practical Center for Neurology and Neurosurgery. The clinical picture of the disease, comorbidities, sleep questionnaires, laboratory tests, overnight pulse oximetry and spirometry were performed and analyzed.
Genetics
December 2024
Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland.
Expansion of nucleotide repeat sequences is associated with more than 40 human neuromuscular disorders. The different pathogenic mechanisms associated with the expression of nucleotide repeats are not well understood. We use a Caenorhabditis elegans model that expresses expanded CUG repeats only in cells of the body wall muscle and recapitulate muscle dysfunction and impaired organismal motility to identify the basis by which expression of RNA repeats is toxic to muscle function.
View Article and Find Full Text PDFAs adaptors, catalysts, guides, messengers, scaffolds and structural components, RNAs perform an impressive array of cellular regulatory functions often by recruiting RNA-binding proteins (RBPs) to form ribonucleoprotein complexes (RNPs). While this RNA-RBP interaction network allows precise RNP assembly and the subsequent structural dynamics required for normal functions, RNA motif mutations may trigger the formation of aberrant RNP structures that lead to cell dysfunction and disease. Here, we provide our perspective on one type of RNA motif mutation, RNA gain-of-function mutations associated with the abnormal expansion of short tandem repeats (STRs) that underlie multiple developmental and degenerative diseases.
View Article and Find Full Text PDFBioessays
December 2024
CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
Myotonic dystrophy type 1 (DM1) is considered a progeroid disease (i.e., causing premature aging).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!