Redox-mediator-free degradation of sulfathiazole and tetracycline using Phanerochaete chrysosporium.

J Environ Sci Health A Tox Hazard Subst Environ Eng

a Department of Environment Engineering , INHA University, Nam-gu, Incheon , Republic of Korea.

Published: November 2017

The removal of two of the most commonly used antibiotics, tetracycline (TC) and sulfathiazole (STZ), using laccase-producing Phanerochaete chrysosporium was studied in liquid-phase batch experiments in the absence of any synthetic redox mediator. The removal of STZ and TC from single antibiotic spikes varied from 97.8% to 15.4% and 98.8% to 31%, respectively, with increasing initial doses of 10-250 mg L within 14 days of incubation. The enzyme activity of P. chrysosporium was only minimally influenced by the concentrations of these antibiotics. The degradation of antibiotics initiated before an appreciable extracellular enzyme activity was noted in the fungal culture. The appearance of low-molecular weight molecular fragments from parent antibiotics in liquid chromatography-mass spectrometry confirmed the biodegradation process.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2017.1356191DOI Listing

Publication Analysis

Top Keywords

phanerochaete chrysosporium
8
enzyme activity
8
redox-mediator-free degradation
4
degradation sulfathiazole
4
sulfathiazole tetracycline
4
tetracycline phanerochaete
4
chrysosporium removal
4
removal commonly
4
antibiotics
4
commonly antibiotics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!