Central and peripheral renin-angiotensin systems (RASs) act in a coordinated manner for the physiologic functions regulated by neuroendocrine events. However, whereas the diurnal rhythm of peripheral circulatory and tissue RASs is well known, the circadian behaviour of their components in central photo-neuro-endocrine structures, key elements for the control of circadian rhythms, has been barely studied. In the present study, we analysed the aspartyl- (AspAP) and glutamyl-aminopeptidase (GluAP) (aminopeptidase A) activities, the angiotensinases responsible for the metabolism of Ang I to Ang 2-10 and Ang II to Ang III, respectively, in the retina, anterior hypothalamus and pituitary at different light and dark time-points of a 12:12 h light:dark cycle (7-19 h light), using arylamide derivatives as substrates. The results demonstrated that while retina and pituitary exhibited their highest levels of AspAP activity in the light period and the lowest in the dark one, the contrary occurred in the hypothalamus - the lowest levels were observed in light conditions and the highest in darkness. The outcome for GluAP showed the highest levels in the light period and the lowest in the dark one in the three tissues analysed. In conclusion, changes in angiotensinase activities throughout the daytime may cause changes of their respective substrates and derived peptides and, consequently, in their functions. This observation may have implications for the treatment of hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07420528.2017.1354871DOI Listing

Publication Analysis

Top Keywords

angiotensinase activities
8
ang ang
8
highest levels
8
light period
8
period lowest
8
lowest dark
8
light
5
diurnal opposite
4
opposite variation
4
variation angiotensinase
4

Similar Publications

Prolylcarboxypeptidase (PRCP, PCP, Lysosomal Pro-X-carboxypeptidase, Angiotensinase C) controls angiotensin- and kinin-induced cell signaling. Elevation of PRCP appears to be activated in chronic inflammatory diseases [cardiovascular disease (CVD), diabetes] in proportion to severity. Vascular endothelial cell senescence and mitochondrial dysfunction have consistently been shown in models of CVD in aging.

View Article and Find Full Text PDF

It has been suggested that the neuro-visceral integration works asymmetrically and that this asymmetry is dynamic and modifiable by physio-pathological influences. Aminopeptidases of the renin-angiotensin system (angiotensinases) have been shown to be modifiable under such conditions. This article analyzes the interactions of these angiotensinases between the left or right frontal cortex (FC) and the same enzymes in the hypothalamus (HT), pituitary (PT), adrenal (AD) axis (HPA) in control spontaneously hypertensive rats (SHR), in SHR treated with a hypotensive agent in the form of captopril (an angiotensin-converting enzyme inhibitor), and in SHR treated with a hypertensive agent in the form of the L-Arginine hypertensive analogue L-NG-Nitroarginine Methyl Ester (L-NAME).

View Article and Find Full Text PDF
Article Synopsis
  • The dysregulated renin-angiotensin system (RAS) plays a significant role in the severity and outcomes of COVID-19, largely due to the impact of angiotensin II (Ang II) following the interaction between SARS-CoV-2 and ACE receptors.
  • Various angiotensinases, beyond ACE, could mitigate the harmful effects of the virus, yet their activity diminishes amid the disease’s progression, leading to increased Ang II levels.
  • COVID-19 vaccines may stimulate the production of spike proteins that affect ACE receptors, raising the risk of adverse reactions, particularly in younger, healthier individuals who experience Ang II accumulation more severely than older patients with comorbidities.
View Article and Find Full Text PDF

(1) Background: Prolonged feeding with a high-fat diet (HFD) acts as a stressor by activating the functions of the hypothalamic-pituitary-adrenal gland (HPA) stress axis, accompanied of hypertension by inducing the renin-angiotensin-aldosterone system. Angiotensinases enzymes are regulatory aminopeptidases of angiotensin metabolism, which together with the dipeptidyl peptidase IV (DPP-IV), pyroglutamyl- and tyrosyl-aminopeptidase (pGluAP, TyrAP), participate in cognitive, stress, metabolic and cardiovascular functions. These functions appear to be modulated by the type of fat used in the diet.

View Article and Find Full Text PDF

(1) Background: The replacement of diets high in saturated fat (SAFA) with monounsaturated fatty acids (MUFA) is associated with better cardiovascular function and is related to the modulation of the activity of the local renin-angiotensin system (RAS) and the collagenase activity of dipeptidyl peptidase IV (DPP-IV). The objective of the work was to verify the capacity of different types of dietary fat on the regulatory activities of RAS and DPP-IV. (2) Methods: Male Wistar rats were fed for 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or with butter (20%) plus cholesterol (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!