Despite the multiple length and time scales over which fluid-mineral interactions occur, interfacial phenomena control the exchange of matter and impact the nature of multiphase flow, as well as the reactivity of C-O-H fluids in geologic systems. In general, the properties of confined fluids, and their influence on porous geologic phenomena are much less well understood compared to those of bulk fluids. We used equilibrium molecular dynamics simulations to study fluid systems composed of propane and water, at different compositions, confined within cylindrical pores of diameter ∼16 Å carved out of amorphous silica. The simulations are conducted within a single cylindrical pore. In the simulated system all the dangling silicon and oxygen atoms were saturated with hydroxyl groups and hydrogen atoms, respectively, yielding a total surface density of 3.8 -OH/nm. Simulations were performed at 300 K, at different bulk propane pressures, and varying the composition of the system. The structure of the confined fluids was quantified in terms of the molecular distribution of the various molecules within the pore as well as their orientation. This allowed us to quantify the hydrogen bond network and to observe the segregation of propane near the pore center. Transport properties were quantified in terms of the mean square displacement in the direction parallel to the pore axis, which allows us to extract self-diffusion coefficients. The diffusivity of propane in the cylindrical pore was found to depend on pressure, as well as on the amount of water present. It was found that the propane self-diffusion coefficient decreases with increasing water loading because of the formation of water bridges across the silica pores, at sufficiently high water content, which hinder propane transport. The rotational diffusion, the lifespan of hydrogen bonds, and the residence time of water molecules at contact with the silica substrate were quantified from the simulated trajectories using the appropriate autocorrelation functions. The simulations contribute to a better understanding of the molecular phenomena relevant to the behavior of fluids in the subsurface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5657426 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.7b03093 | DOI Listing |
J Chem Phys
January 2025
Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
In biological systems such as cells, the macromolecules, which are anisotropic particles, diffuse in a crowded medium. In the present work, we have studied the diffusion of spheroidal particles diffusing between cylindrical obstacles by varying the density of the obstacles as well as the spheroidal particles. Analytical calculation of the free energy showed that the orientational vector of a single oblate particle will be aligned perpendicular, and a prolate particle will be aligned parallel to the symmetry axis of the cylindrical obstacles in equilibrium.
View Article and Find Full Text PDFAIP Adv
December 2024
Center for Natural Sciences, University of Pannonia, Egyetem u. 10, Veszprém 8200, Hungary.
We present simulation results for the Donnan equilibrium between a homogeneous bulk reservoir and inhomogeneous confining geometries with varying number of restricted dimensions, . Planar slits ( = 1), cylindrical pores ( = 2), and spherical cavities ( = 3) are considered. The walls have a negative surface charge density.
View Article and Find Full Text PDFComput Biol Med
December 2024
Department of Mathematics, Capital University of Science and Technology, Islamabad, 44000, Pakistan.
The dynamic behavior of articular cartilage (a soft porous biological tissue) with strain-dependent nonlinear permeability under cyclic compressive loading and magnetic field is investigated computationally. The compressive force is applied on top surface of the cylindrical plug of the tissue by means of a porous filter. The study of mechanical and deformational behavior of soft porous tissues such as articular cartilage under dynamic compressive loading and magnetic field is useful in understanding the underlying mechano-biological process that may lead to the development of a treatment and recovery protocol in a diseased state.
View Article and Find Full Text PDFACS Photonics
December 2024
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
The rise of CubeSats has unlocked opportunities for cutting-edge space missions with reduced costs and accelerated development timelines. CubeSats necessitate a high-gain antenna that can fit within a tightly confined space. This paper is primarily concerned with designing a compact Ku-band offset cylindrical reflector antenna for a CubeSat-based Earth Observation mission, with the goal of monitoring Arctic snow and sea ice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!