Kagome lattices have attracted much attention owing to their potential applications in spin-frustrated magnetism and host-guest chemistry. Examples toward the fabrication of 2D Kagome lattices reported previously have in common that the precursor molecules were typically deposited on the surface structurally intact with no chemical reactions accompanied. Herein, by using a combination of synchrotron radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM), we demonstrated the fabrication of two types of chiral Kagome lattices from on-surface synthesized organometallic compounds, which are known as intermediates of Glaser coupling on silver single crystal surfaces. These Kagome lattices are stabilized by the interplay of various intermolecular interactions, including Br⋅⋅⋅Br bonds, C-Br⋅⋅⋅π bonds and π-π stacking. The chiral transference and host-guest supramolecular structure in the novel Kagome lattices were also studied. Our studies may pave a new way to engineer complex supramolecular networks through on-surface reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201700769 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!