Photodynamic therapy for glioblastoma: A preliminary approach for practical application of light propagation models.

Lasers Surg Med

Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Image Assisted Laser Therapy for Oncology, Lille, F-59000, France.

Published: July 2018

Purpose: Photodynamic therapy (PDT) is a promising treatment modality to be added in the management of glioblastoma multiforme (GBM). Light distribution modeling is required for planning and optimizing PDT. Several models have been developed to predict the light propagation inside biological tissues. In the present study, two analytical methods of light propagation emitted from a cylindrical fiber source were evaluated: a discrete and a continuous method.

Methods: The two analytical approaches were compared according to their fluence rate results. Several cylindrical diffuse lengths were evaluated, and the relative deviation in the fluence rates was estimated. Moreover, a sensitivity analysis was conducted to compute the variance of each analytical model.

Results: The discrete method provided fluence rate estimations closer to the Monte-Carlo simulations than the continuous method. The sensitivity study results did not reveal significant differences between the variance of the two analytical models.

Conclusions: Although the discrete model provides relevant light distribution, the heterogeneity of GBM tissues was not considered. With the improvement in parallel computing that drastically decreased the computing time, replacing the analytical model by a Monte-Carlo GPU-accelerated code appeared relevant to the GBM case. Nonetheless, the analytical modeling may still function in the optimization algorithms, which might be used in the Photodynamic treatment planning system. Lasers Surg. Med. 50:523-534, 2018. © 2017 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.22739DOI Listing

Publication Analysis

Top Keywords

light propagation
12
photodynamic therapy
8
light distribution
8
fluence rate
8
variance analytical
8
analytical
6
light
5
therapy glioblastoma
4
glioblastoma preliminary
4
preliminary approach
4

Similar Publications

Background: Geraniums (Pelargonium) are among the most popular flowers worldwide. Viral infection is one of the main problems of the genus Pelargonium, and the production of virus-free mother plants is necessary for large-scale geranium propagation and exchange. Meristem culture and thermotherapy are two effective procedures that have been widely adopted to produce healthy virus-free plant stocks.

View Article and Find Full Text PDF

Persistence and neutrality in interacting replicator dynamics.

J Math Biol

January 2025

Instituto de Ingeniería Matemática, Universidad de Valparaíso, Valparaíso, Chile.

We study the large-time behavior of an ensemble of entities obeying replicator-like stochastic dynamics with mean-field interactions as a model for a primordial ecology. We prove the propagation-of-chaos property and establish conditions for the strong persistence of the N-replicator system and the existence of invariant distributions for a class of associated McKean-Vlasov dynamics. In particular, our results show that, unlike typical models of neutral ecology, fitness equivalence does not need to be assumed but emerges as a condition for the persistence of the system.

View Article and Find Full Text PDF

Digital Feedback Loop in Paraxial Fluids of Light: A Gate to New Phenomena in Analog Physical Simulations.

Phys Rev Lett

December 2024

Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.

Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.

View Article and Find Full Text PDF

Silicon photonic MEMS switches based on split waveguide crossings.

Nat Commun

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

The continuous push for high-performance photonic switches is one of the most crucial premises for the sustainable scaling of programmable and reconfigurable photonic circuits for a wide spectrum of applications. Conventional optical switches rely on the perturbative mechanisms of mode coupling or mode interference, resulting in inherent bottlenecks in their switching performance concerning size, power consumption and bandwidth. Here we propose and realize a silicon photonic 2×2 elementary switch based on a split waveguide crossing (SWX) consisting of two halves.

View Article and Find Full Text PDF

Cuprizone (CPZ) is a widely used toxin that induces demyelinating diseases in animal models, producing multiple sclerosis (MS)-like pathology in rodents. CPZ is one of the few toxins that triggers demyelination and subsequent remyelination following the cessation of its application. This study examines the functional consequences of CPZ-induced demyelination and the subsequent recovery of neural communication within the anterior cingulate cortex (ACC), with a particular focus on interhemispheric connectivity via the corpus callosum (CC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!