We report here a manganese-catalyzed C-H methylation reaction of considerable substrate scope, using MeMgBr, a catalytic amount of MnCl·2LiCl, and an organic dihalide oxidant. The reaction features ambient temperature, low catalyst loading, typically 1%, high catalytic turnover reaching 5.9 × 10, and no need for an extraneous ligand and illustrates a unique catalytic use of simple manganese salts for C-H activation, which so far has relied on catalysis by manganese carbonyls.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.7b02778DOI Listing

Publication Analysis

Top Keywords

high catalytic
8
catalytic turnover
8
manganese-catalyzed directed
4
directed methylation
4
methylation csp-h
4
csp-h bonds
4
bonds °c
4
°c high
4
catalytic
4
turnover report
4

Similar Publications

The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.

View Article and Find Full Text PDF

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.

View Article and Find Full Text PDF

Rice (Oryza sativa) is a vital food crop and staple diet for most of the world's population. Poor dietary choices have had a significant role in the development of type-2 diabetes in the population that relies on rice and rice-starch-based foods. Hence, our study investigated the in vitro digestion and glycemic indices of certain indigenous rice cultivars and the factors influencing these indices.

View Article and Find Full Text PDF

Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions.

Nat Commun

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.

In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!