It is well-accepted that most osteogenic differentiation processes do need growth factors assistance to improve efficiency. As a material cue, hydroxyapatite (HAp) can promote osteogenic differentiation of stem cells only in a way. Up to now, rare work related to the relationship between HAp nanostructures and stem cells in osteogenic differentiation process without the assistance of growth factors has been reported. In this study, one-dimensional (1D) HAp nanostructures with tunable length were synthesized by an oleic acid assisted solvothermal method by adjusting the alcohol/water ratio (η). The morphology of 1D HAp nanostructures can be changed from long nanowires into nanorods with the η value change. Different substrates constructed by 1D HAp nanostructures were prepared to investigate the effect of morphology of nanostructured HAp on stem cell fate without any growth factors or differentiation induce media. Human adipose-derived stem cells (hADSCs), a kind of promising stem cell for autologous stem cell tissue engineering, were used as the stem cell model. The experiments prove that HAp morphology can determine the performance of hADSCs cultured on different substrates. Substrate constructed by HAp nanorods (100 nm) is of little benefit to osteogenic differentiations. Substrate constructed on HAp long nanowires (50 μm) causes growth and spread inhibition of hADSCs, which even causes most cells death after 7 days of culture. However, substrate constructed by HAp short nanowires (5 μm) can destine the hADSCs differentiation to osteoblasts efficiently in normal medium (after 3 weeks) without any growth factors. It is surprise that hADSCs have changed to polyhedral morphology and exhibited the tendency to osteogenic differentiation after only 24 h culture. Hydroxyapatite nanostructures mediated stem cell osteogenic differentiation excluding growth factors provides a powerful cue to design biomaterials with special nanostructures, and helps to elucidate the interaction of stem cell and biomaterials nanostructures. The results from this study are promising for application in bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b13313DOI Listing

Publication Analysis

Top Keywords

stem cell
28
osteogenic differentiation
20
growth factors
20
hap nanostructures
16
constructed hap
16
stem cells
12
substrate constructed
12
stem
10
hap
10
nanostructures
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.

Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.

View Article and Find Full Text PDF

Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).

Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!