A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast 3D rosette spectroscopic imaging of neocortical abnormalities at 3 T: Assessment of spectral quality. | LitMetric

Purpose: To use a fast 3D rosette spectroscopic imaging acquisition to quantitatively evaluate how spectral quality influences detection of the endogenous variation of gray and white matter metabolite differences in controls, and demonstrate how rosette spectroscopic imaging can detect metabolic dysfunction in patients with neocortical abnormalities.

Methods: Data were acquired on a 3T MR scanner and 32-channel head coil, with rosette spectroscopic imaging covering a 4-cm slab of fronto-parietal-temporal lobes. The influence of acquisition parameters and filtering on spectral quality and sensitivity to tissue composition was assessed by LCModel analysis, the Cramer-Rao lower bound, and the standard errors from regression analyses. The optimized protocol was used to generate normative white and gray matter regressions and evaluate three patients with neocortical abnormalities.

Results: As a measure of the sensitivity to detect abnormalities, the standard errors of regression for Cr/NAA and Ch/NAA were significantly correlated with the Cramer-Rao lower bound values (R = 0.89 and 0.92, respectively, both with P < 0.001). The rosette acquisition with a duration of 9.6 min, produces a mean Cramer-Rao lower bound (%) over the entire slab of 4.6 ± 2.6 and 5.8 ± 2.3 for NAA and Cr, respectively. This enables a Cr/NAA standard error of 0.08 (i.e., detection sensitivity of 25% for a 50/50 mixed gray and white matter voxel). In healthy controls, the regression of Cr/NAA versus fraction gray matter in the cingulate differs from frontal and parietal regions.

Conclusions: Fast rosette spectroscopic imaging acquisitions with regression analyses are able to identify metabolic differences across 4-cm slabs of the brain centrally and over the cortical periphery with high efficiency, generating results that are consistent with clinical findings. Magn Reson Med 79:2470-2480, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821598PMC
http://dx.doi.org/10.1002/mrm.26901DOI Listing

Publication Analysis

Top Keywords

rosette spectroscopic
16
spectroscopic imaging
16
spectral quality
12
fast rosette
8
patients neocortical
8
cramer-rao lower
8
lower bound
8
standard errors
8
errors regression
8
spectroscopic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!