A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diagnosis of coronary artery disease using an efficient hash table based closed frequent itemsets mining. | LitMetric

Diagnosis of coronary artery disease using an efficient hash table based closed frequent itemsets mining.

Med Biol Eng Comput

Department of Computer Applications, St.Xavier's Catholic College of Engineering, Chunkankadai, K.K. Dist., Nagercoil, 629003, Tamil Nadu, India.

Published: May 2018

This paper proposes an efficient hash table based closed frequent itemsets (HCFI) mining algorithm to envisage coronary artery disease early. HCFI algorithm generates closed frequent itemsets efficiently by performing intersection operation on transaction id's of itemset without considering the name of item/itemset. The employed hash table reduces search efficiency to O(1) or constant time. HCFI algorithm is applied on the UCI (University of California, Irvine) Cleveland dataset, a biological database of cardiovascular disease to generate closed frequent itemsets on the dataset. The findings of HCFI algorithm are (1) it determines a set of distinguished features to differentiate a 'healthy' and a 'sick' class. The features such as heart status being normal, oldpeak being less than or equal to 1.2, slope being up, number of vessels colored being zero, absence of exercise-induced angina, maximum heart rate achieved between 151 and 180 are referred as 'healthy' class. The features like chest pain are being asymptomatic, heart-status being reversible defect, slope being flat, and presence of exercise-induced-angina and serum cholesterol being greater than 240 indicate a presumption of heart disease to both genders. (2) It predicts that females have less chance of coronary heart disease than males. This algorithm is also compared with two other state-of-the-art-algorithms 'NAFCP' (N-list based algorithm for mining frequent closed patterns) and 'PredictiveApriori' to show the effectiveness of the proposed algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-017-1719-6DOI Listing

Publication Analysis

Top Keywords

closed frequent
16
frequent itemsets
16
hash table
12
hcfi algorithm
12
coronary artery
8
artery disease
8
efficient hash
8
table based
8
based closed
8
class features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!