We report on vapochromic films suitable for detecting volatile organic compounds (VOCs), based on polycarbonate (PC) doped with 4-(triphenylamino)phthalonitrile (), a fluorescent molecular rotor sensitive to solvent polarity and viscosity. PC films of variable thickness (from 20 up to 80 µm) and containing small amounts of (0.05 wt.%) were prepared and exposed to a saturated atmosphere of different VOCs. /PC films showed a gradual decrease and red-shift of the emission during the exposure to solvents with high polarity index and favourable interaction with the polymer matrix such as THF, CHCl, and acetonitrile. In the case of the most interacting solvents (THF and CHCl), /PC films also showed a fluorescence increase at longer exposure times, as a consequence of an irreversible, solvent-induced crystallization process of the polymeric matrix. The vapochromism of /PC films is rationalized on the basis of alterations of the rotor intramolecular motion upon solvent uptake by PC and polarity effects of the microenvironment. Interestingly, the fluorescence response of the /PC films shows a non-trivial, tuneable dependence on film thickness during the second solvent-exposure stage. The latter effect is attributed to a variable extent of the crystallization process occurring in the PC films. This observation promptly suggests, in turn, an effective procedure to modulate the spectroscopic response in such functionalized polymeric materials through the precise control of the film thickness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593119 | PMC |
http://dx.doi.org/10.1002/pat.3688 | DOI Listing |
Sensors (Basel)
December 2024
MESA+ Institute for Nanotechnology, University of Twente, 7522 NH Enschede, The Netherlands.
This paper introduces a Coriolis mass flow and density sensor. The sensor is made using Surface Channel Technology (SCT) but with selective wet etching to create the channels. This method forms suspended microfluidic channels with a larger cross-sectional area.
View Article and Find Full Text PDFMolecules
December 2024
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
It is necessary to overcome the relatively low conductivity of ionic liquids (ILs) caused by steric hindrance effects to improve their ability to passivate defects and inhibit ion migration to boost the photovoltaic performance of perovskite solar cells (PSCs). Herein, we designed and prepared a kind of low-concentration 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF) diluted with propylene carbonate (PC) via an ultrasonic technique (PC/IL). The decrease in the decomposition temperature related to the IL part and the increase in the sublimation temperature related to the PC part facilitated the use of PC/IL to effectively delay the crystallization process and passivate the defects in multiple ways to obtain high-quality perovskite films.
View Article and Find Full Text PDFFoods
December 2024
Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA.
Due to their inability to biodegrade, petroleum-based plastics pose significant environmental challenges by disrupting aquatic, marine, and terrestrial ecosystems. Additionally, the widespread presence of microplastics and nanoplastics induces serious health risks for humans and animals. These pressing issues create an urgent need for designing and developing eco-friendly, biodegradable, renewable, and non-toxic plastic alternatives.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany.
Sci Rep
January 2025
Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Smart packaging, also known as intelligent packaging, is responsive to external stimuli, moisture, light, oxygen, heat, pH, and bacterial growth. In this study, polyvinyl alcohol/nanochitosan/phycocyanin nanocomposite (PVA/NCH/PC-NC) for fish fillets of Oncorhynchus mykiss rainbow trout coating was prepared. Five treatments were prepared over a period of 14 days (0, 1, 7 and 14 days) under treatments of T: fish coated with PVA/NCH-NC without PC; T, T T and T fish coated with PVA/NCH/PC-NC (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!