We report the remarkably high electrical conductance of microporous 3D graphene-like carbons that were formed using lanthanum (La)-catalyzed synthesis in a Y zeolite (LaY) template investigated using conductive atomic force microscopy (C-AFM) and theoretical calculations. To uncover the relation between local electrical conductance and the microporous structures, we tuned the crystallographic ordering of LaY-templated carbon systems by changing the heating temperature. The structure of the LaY-templated carbon prepared at the higher temperature has graphene-like sp hybridized bonds, which was confirmed using high-resolution transmission electron microscopy and X-ray diffraction measurements. C-AFM current-voltage spectroscopy revealed that the local current flow in the LaY-templated carbon depends on the quantity of C-C bonds within the narrow neck between the closed supercages (i.e. there are three types of carbon: carbon with heat treatment, carbon without heat treatment, and carbon synthesized at low temperature). The difference in electrical conductance on the LaY-templated carbon was also confirmed via theoretical computation using the Boltzmann transport theory and the deformation potential theory based on the density functional theory. These results suggest that the degree of order of the pores in the 3D zeolite-templated carbon structures is directly related to electrical conductance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597609 | PMC |
http://dx.doi.org/10.1038/s41598-017-11602-5 | DOI Listing |
PLoS One
January 2025
Department of Pulmonary Diseases, Uludag University Faculty of Medicine, Bursa, Turkey.
Background: End-stage renal disease (ESRD) patients frequently experience protein-energy wasting (PEW), which increases their morbidity and mortality rates.
Objective: This study explores the effects of nutritional status and pulmonary function on the short- and long-term mortality of ESRD patients undergoing hemodialysis.
Materials And Methods: 67 consecutive ESRD patients on maintenance hemodialysis were included in the study.
J Mol Model
January 2025
Nanjing Hydraulic Research Institute, Shanghai, China.
Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
Objectives: The increasing prevalence of obesity underscores the need to explore its impact on assisted reproductive technology (ART) outcomes. This study aims to evaluate the association between visceral fat area (VFA), measured by bioelectrical impedance analysis (BIA), and pregnancy outcomes following frozen embryo transfer (FET).
Methods: In this retrospective clinical study, the data of 1,510 patients who underwent FET between April 2022 and April 2023 were analyzed.
Heliyon
January 2025
Department of Electronic Engineering, University of Nigeria, Nsukka, 410001, Enugu, Nigeria.
Maximum Power Point Tracking (MPPT) is a technique employed in photovoltaic (PV) systems to ensure that the modules transfer the maximum generated power to the load. An advanced algorithm, the Improved Optimized Adaptive Differential Conductance (IOADC), was developed by applying Kirchhoff's law within a single diode model framework. The algorithm's performance was evaluated under various solar irradiance levels of 500 W/m, 750 W/m, and 1000 W/m at a constant temperature of 298K, analyzing its impact on power generation and transfer.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
Sodium-based rechargeable batteries are some of the most promising candidates for electric energy storage with abundant sodium reserves, particularly, sodium-based dual-ion batteries (SDIBs) perform advantages in high work voltage (≈5.0 V), high-power density, and potentially low cost. However, irreversible electrolyte decomposition and co-intercalation of solvent molecules at the electrode interface under a high charge state are blocking their development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!