Reactive oxygen species, if produced in excess by oxidative phosphorylation, contributes to mitochondrial DNA damage and progressive respiratory chain dysfunction, leading to various diseases including carcinogenesis. Mitochondria are susceptible to oxidative stress (OS) owing to lack of introns, protective histones, and DNA repair enzymes. However, mitochondria are protected from OS by numerous antioxidants such as superoxide dismutase 2 (SOD2), catalase, glutaredoxin 2 (GLRX2), reduced glutathione (GSH), glutathione peroxidase (GPX), and thioredoxin 2 (TXN2). To obtain insights regarding expression of these mitochondrial antioxidants in oral squamous cell carcinoma (OSCC), we performed qualitative and quantitative estimations of key molecular players of mitochondrial antioxidants during various stages of OSCC by immunoblotting with specific antibodies against antioxidant enzymes and/or biochemical assays. Different mitochondrial antioxidants varied in their expression levels as OSCC progressed. The levels of GPX1, GPX4, and catalase reduced with progression of OSCC. However, GLRX2, PXR3, TXN2, and reduced GSH gradually increased. Expression of SOD2 decreased initially in Stages II and III of OSCC but increased in Stage IV. In conclusion, our findings indicate a complex interplay of various mitochondrial antioxidants in different stages of OSCC, and further insights regarding these molecular players can help us better understand the pathogenesis of OSCC in context of mitochondrial redox status.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2334/josnusd.16-0655 | DOI Listing |
Food Funct
January 2025
Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
, a potential probiotic for use in food and feed production, can exert anti-aging effects in a strain-specific manner. However, the molecular mechanisms underlying its anti-aging effects remain poorly understood. This study explored the effects of WF2020 (WF2020), isolated from Chinese fermented pickles, on longevity and health and investigated the underlying mechanisms in .
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People's Republic of China.
Diabetic periodontitis is a common oral complication of diabetes characterized by progressive destruction of periodontal tissues. Recent evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis and progression of this condition. This review aims to systematically summarize the role and potential mechanisms of mitochondrial dysfunction in diabetic periodontitis.
View Article and Find Full Text PDFIntroduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.
Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.
Curr Pharm Des
January 2025
Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
Molecular hydrogen (H2) is considered a biological antioxidant. Hydrogen-rich Water (HRW) is regular water that contains dissolved H2 and has become more widely used in recent years. This review summarizes the basic research and clinical applications of HRW consumption to support its use for daily health and clinical treatment.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; Gansu Innovation Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China. Electronic address:
The present study aims to characterize the structural features of a natural polysaccharide called PAP-1b extracted from the roots of Potentilla anserina L. and to evaluate its antioxidant activity. Structural characterization indicated that PAP-1b with a molecular weight of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!