Residual periodontal ligament (PDL) and cement mass on the roots of extracted teeth are factors that considerably affect tooth transplantation. Therefore, when normal extracted teeth are used for autologous transplantation, it is necessary to regenerate the PDL of the root surface. Here we describe a method to examine human PDL cell adhesion on sterilized root surfaces. Sample teeth were extracted during orthodontic treatment. PDL cells were obtained from healthy periodontal tissue explants from teeth extracted for orthodontic reasons. We developed a method for adhering PDL cells to sterile root surfaces using three-dimensional culture for 3 weeks. We evaluated the adhesion of human PDL cells to the sterilized root surfaces biochemically and histologically. The adherent PDL cells presented new projections on the sterile root surfaces. Therefore, PDL cells can adhere to sterile root surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.2334/josnusd.16-0501DOI Listing

Publication Analysis

Top Keywords

root surfaces
20
pdl cells
20
sterilized root
12
sterile root
12
adhesion human
8
periodontal ligament
8
three-dimensional culture
8
root surface
8
pdl
8
extracted teeth
8

Similar Publications

Dimethyl Fumarate attenuates synovial inflammation, reduces nociception, and inhibits the development of post-traumatic osteoarthritis.

Biomed Pharmacother

January 2025

Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA. Electronic address:

There is currently no cure or disease-modifying treatment for post-traumatic osteoarthritis (PTOA). This study aims to assess the efficacy of dimethyl fumarate (DMF), a US-FDA approved drug for multiple sclerosis, as a treatment for PTOA. PTOA was induced in male Lewis rats by medial meniscal transection (MMT) surgery, and DMF was intra-articularly administered once, one week following surgery.

View Article and Find Full Text PDF

This study explores the development of electrospun nanofibers incorporating bioactive compounds from (Ashwagandha) root extract, focusing on optimizing extraction conditions and nanofiber composition to maximize biological activity and application potential. Using the Design of Experiment (DoE) approach, optimal extraction parameters were identified as 80% methanol, 70 °C, and 60 min, yielding high levels of phenolic compounds and antioxidant activity. Methanol concentration emerged as the critical factor influencing phytochemical properties.

View Article and Find Full Text PDF

Intercropping with legume forages is recognized as an effective strategy for enhancing nitrogen levels in agroforestry, while mowing may influence nitrogen fixation capacity and yield. This study investigated the rooting, nitrogen fixation, nutritive value, and yield of alfalfa ( L.) under intercropping and varying mowing frequencies (CK, 2, and 3) from 2021 to 2023, using walnut ( L.

View Article and Find Full Text PDF

Application of Biochar-Immobilized for Enhancing Phosphorus Uptake and Growth in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.

Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .

View Article and Find Full Text PDF

The concurrent environmental challenges of invasive species and soil microplastic contamination increasingly affect agricultural ecosystems, yet their combined effects remain underexplored. This study investigates the interactive impact of the legacy effects of Canada goldenrod ( L.) invasion and soil microplastic contamination on wheat ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!