Evolution of polymer formation within the actin superfamily.

Mol Biol Cell

MRC-Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK

Published: September 2017

While many are familiar with actin as a well-conserved component of the eukaryotic cytoskeleton, it is less often appreciated that actin is a member of a large superfamily of structurally related protein families found throughout the tree of life. Actin-related proteins include chaperones, carbohydrate kinases, and other enzymes, as well as a staggeringly diverse set of proteins that use the energy from ATP hydrolysis to form dynamic, linear polymers. Despite differing widely from one another in filament structure and dynamics, these polymers play important roles in ordering cell space in bacteria, archaea, and eukaryotes. It is not known whether these polymers descended from a single ancestral polymer or arose multiple times by convergent evolution from monomeric actin-like proteins. In this work, we provide an overview of the structures, dynamics, and functions of this diverse set. Then, using a phylogenetic analysis to examine actin evolution, we show that the actin-related protein families that form polymers are more closely related to one another than they are to other nonpolymerizing members of the actin superfamily. Thus all the known actin-like polymers are likely to be the descendants of a single, ancestral, polymer-forming actin-like protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597319PMC
http://dx.doi.org/10.1091/mbc.E15-11-0778DOI Listing

Publication Analysis

Top Keywords

actin superfamily
8
protein families
8
diverse set
8
single ancestral
8
actin
5
polymers
5
evolution polymer
4
polymer formation
4
formation actin
4
superfamily familiar
4

Similar Publications

Unlabelled: Myosin-IC (myo1c) is a class-I myosin that supports transport and remodeling of the plasma membrane and membrane-bound vesicles. Like other members of the myosin family, its biochemical kinetics are altered in response to changes in mechanical loads that resist the power stroke. However, myo1c is unique in that the primary force-sensitive kinetic transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins.

View Article and Find Full Text PDF

Characterization of tripartite motif containing 59 (TRIM59) in Epinephelus akaara: Insights into its immune involvement and functional properties in viral pathogenesis, macrophage polarization, and apoptosis regulation.

Fish Shellfish Immunol

February 2025

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

The tripartite motif-containing (TRIM) superfamily is the largest family of RING-type E3 ubiquitin ligases that is conserved across the metazoan kingdom. Previous studies in mammals have demonstrated that TRIM59 possesses ubiquitin-protein ligase activity and acts as a negative regulator of NF-κB signaling. However, TRIM59 has rarely been characterized in fish.

View Article and Find Full Text PDF

Cancer associated fibroblasts (CAFs) are the predominant stromal cell-type in the solid tumor microenvironment, originating from various cell types and playing a crucial role in promoting tumor progression and metastasis The generation of CAFs is influenced by complex factors secreted by tumor cells, with particular emphasis on transforming growth factor-β (TGF-β). However, it remains largely unknown whether growth/differentiation factor-15 (GDF15), as a member of the TGF-β superfamily, exerts similar effects to TGF-β in oral squamous cell carcinoma (OSCC). In this study, we investigated the impact of GDF15 derived from tumor cells on CAF transformation and elucidated the underlying mechanisms.

View Article and Find Full Text PDF

Maintaining body homeostasis is the ultimate key to health. There are rich resources of bioactive materials for the functionality of homeostatic modulators (HMs) from both natural and synthetic chemical repertories. HMs are powerful modern therapeutics for human diseases including neuropsychiatric diseases, mental disorders, and drug addiction (e.

View Article and Find Full Text PDF

Deciphering the impact of MreB on the morphology and pathogenicity of the aquatic pathogen Spiroplasma eriocheiris.

Biol Direct

October 2024

Institute of Pathogenic Biology, Basic Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China.

Background: Spiroplasma eriocheiris has been proved to be a pathogen causing tremor disease of Eriocheir sinensis, it is also infectious to other aquatic crustaceans, resulting in a serious threat on the sustainable development of the aquaculture industry. S. eriocheiris is a helical-shaped microbe without a cell wall, and its motility is related to the cytoskeleton protein MreB which belongs to the actin superfamily and has five MreB homologs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!