MiR408 Regulates Grain Yield and Photosynthesis via a Phytocyanin Protein.

Plant Physiol

Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

Published: November 2017

AI Article Synopsis

  • Increasing the grain yield is a primary focus of crop breeding, and research shows that the microRNA OsmiR408 can enhance this yield in rice by promoting more panicle branches and grains.
  • OsmiR408 works by down-regulating a specific UCL gene, which has an impact on grain yield; both knocking down or knocking out this gene leads to increased yields, while its overexpression reduces them.
  • The study also reveals that OsUCL8, the target of OsmiR408, plays a role in copper homeostasis affecting plastocyanin proteins and photosynthesis, making this research pivotal for developing high-yielding rice varieties through genetic engineering.

Article Abstract

Increasing grain yield is the most important object of crop breeding. Here, we report that the elevated expression of a conserved microRNA, OsmiR408, could positively regulate grain yield in rice () by increasing panicle branches and grain number. We further showed that OsmiR408 regulates grain yield by down-regulating its downstream target, , which is an uclacyanin (UCL) gene of the phytocyanin family. The knock down or knock out of also increases grain yield, while the overexpression of results in an opposite phenotype. Spatial and temporal expression analyses showed that was highly expressed in pistils, young panicles, developing seeds, and inflorescence meristem and was nearly complementary to that of OsmiR408. Interestingly, the OsUCL8 protein was localized to the cytoplasm, distinct from a majority of phytocyanins, which localize to the plasma membrane. Further studies revealed that the cleavage of by miR408 affects copper homeostasis in the plant cell, which, in turn, affects the abundance of plastocyanin proteins and photosynthesis in rice. To our knowledge, this is the first report of the effects of miR408- in regulating rice photosynthesis and grain yield. Our study further broadens the perspective of microRNAs and UCLs and provides important information for breeding high-yielding crops through genetic engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664482PMC
http://dx.doi.org/10.1104/pp.17.01169DOI Listing

Publication Analysis

Top Keywords

grain yield
24
regulates grain
8
grain
7
yield
6
mir408 regulates
4
yield photosynthesis
4
photosynthesis phytocyanin
4
phytocyanin protein
4
protein increasing
4
increasing grain
4

Similar Publications

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

High-performance lightweight materials are urgently needed because of energy savings and emission reduction. Here, we design a new steel with a low density of 6.41 g/cm, which is a 20% weight reduction compared to the conventional steel.

View Article and Find Full Text PDF

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.

View Article and Find Full Text PDF

A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.

View Article and Find Full Text PDF

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!