A class of 24-32 nt PIWI-binding small noncoding RNAs (sncRNAs) termed as PIWI-interacting RNAs (piRNAs) have been identified in animal germline. Recent studies suggest that piRNA/PIWI pathway plays a critical role in both silencing of transposons and posttranscriptional regulation of mRNAs in animal germline. A study from Dr. Mofang Liu's lab in Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, reveals the physiological and pathological importance of PIWI metabolism (mouse PIWI as known as MIWI; human PIWI as HIWI) in mammalian spermatogenesis. Here, we summarize our current understanding of the piRNA/PIWI pathway in mammals (focusing on mouse and human), which is emerging as a fundamental component of spermatogenesis that ensures male fertility and genome integrity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.16288/j.yczz.17-245 | DOI Listing |
Pharm Biol
December 2025
The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.
Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.
Nutrients
January 2025
College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China.
Background/objectives: With the improvement of living standards, alcoholic liver disease caused by long-term drinking has been a common multiple disease. Probiotic interventions may help mitigate liver damage caused by alcohol intake, but the mechanisms need more investigation.
Methods: This study involved 70 long-term alcohol drinkers (18-65 years old, alcohol consumption ≥20 g/day, lasting for more than one year) who were randomly assigned to either the BC99 group or the placebo group.
Genes (Basel)
January 2025
Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China.
Acute alcoholic liver injury (AALI) remains a significant global health concern, primarily driven by oxidative stress. This study investigated the protective mechanisms of BC99 against alcohol-induced oxidative stress using a dual model in rats and Caenorhabditis elegans. In rats, excessive alcohol was predominantly metabolized via the CYP2E1 pathway, leading to severe oxidative stress.
View Article and Find Full Text PDFBMC Genomics
January 2025
MOE Key Laboratory of Marine Genetics and Breeding, Laboratory for Marine Biology and Biotechnology (Qingdao Marine Science and Technology Center), Ocean University of China, Qingdao, China.
Background: Spermatogenesis is a complex process of cellular differentiation that commences with the division of spermatogonia stem cells, ultimately resulting in the production of functional spermatozoa. However, a substantial gap remains in our understanding of the molecular mechanisms and key driver genes that underpin this process, particularly in invertebrates. The dwarf surfclam (Mulinia lateralis) is considered an optimal bivalve model due to its relatively short generation time and ease of breeding in laboratory settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!