Platinum-based chemotherapeutics are amongst the most powerful anti-cancer drugs. Although their exact mechanism of action is not well understood, it is thought to be mediated through covalent DNA binding. We investigated the effect of platinum-based chemotherapeutics on signaling through signal transducer and activator of transcription (STAT) proteins, which are involved in many oncogenic signaling pathways. We performed experiments in various cancer cell lines, investigating the effects of platinum chemotherapeutics on STAT phosphorylation and nuclear translocation, the expression of STAT-modulating proteins and downstream signaling pathways. Direct binding of platinum to STAT proteins was assessed using an AlphaScreen assay. Nuclear STAT3 expression was determined by immunohistochemistry and correlated with disease-free survival in retrospective cohorts of head and neck squamous cell carcinoma (HNSCC) patients treated with cisplatin-based chemoradiotherapy ( 65) or with radiotherapy alone ( = 32). At clinically relevant concentrations, platinum compounds inhibited STAT phosphorylation, resulting in loss of constitutively activated STAT proteins in multiple distinct cancer cell lines. Platinum drugs specifically inhibited phospho-tyrosine binding to SH2 domains, thereby blocking STAT activation, and subsequently downregulating pro-survival- and anti-apoptotic- target genes. Importantly, we found that active STAT3 in tumors directly correlated with response to cisplatin-based chemoradiotherapy in HNSCC patients ( = 0.006). These findings provide insight into a novel, non-DNA-targeted mechanism of action of platinum drugs, and could be leveraged into the use of STAT expression as predictive biomarker for cisplatin chemotherapy and to potentiate other therapeutic strategies such as immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589592 | PMC |
http://dx.doi.org/10.18632/oncotarget.17661 | DOI Listing |
Chemistry
January 2025
The University of British Columbia, Department of Chemistry, 2036 Main Mall, V6T 1Z1, Vancouver, CANADA.
The field of platinum chemistry is ubiquitous in the research of anticancer drugs and new OLED materials. Within the vast library of existing compounds, the majority of work focuses on complexes in the +2 and +4 oxidation states, with comparatively few examples of PtIII complexes reported without bridging ligands. PtIII complexes with metal-metal bonding can be made by mild oxidation of PtII complexes having bis(phenylpyridine) ligands.
View Article and Find Full Text PDFJ Med Chem
January 2025
Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
Cisplatin and oxaliplatin are Pt(II) anticancer agents that are used to treat several cancers, usually in combination with other drugs. Their efficacy is diminished by dose-limiting peripheral neuropathy (PN) that affects ∼70% of patients. PN is caused by selective accumulation of the platinum drugs in the dorsal root ganglia (DRG), which overexpress transporters for cisplatin and oxaliplatin.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.
Cisplatin (DDP), a platinum-chelated compound renowned for its antitumor activity, is often utilized in cancer therapy. However, its real-world clinical efficacy is compromised by poor solubility and low stability, which impedes wider clinical application. Our study aimed to address these limitations of DDP through host-guest supramolecular chemistry approaches.
View Article and Find Full Text PDFExplor Target Antitumor Ther
November 2024
Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland.
Advanced urothelial carcinoma (aUC) has a dismal prognosis, with a 5-year survival rate of approximately 10%. Platinum-based chemotherapy has been the backbone of the first-line treatment of aUC for over 40 years. Only in the last decade, the treatment of aUC has evolved and been enriched with new classes of drugs that demonstrated pivotal improvements in terms of oncological responses and, ultimately, survival.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Oncology gynecology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!