The demonstrated modified spectrophotometric method makes use of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and its specific absorbance properties. Theabsorbance decreases when the radical is reduced by antioxidants. In contrast to otherinvestigations, the absorbance was measured at a wavelength of 550 nm. This wavelengthenabled the measurements of the stable free DPPH radical without interference frommicroalgal pigments. This approach was applied to methanolic microalgae extracts for twodifferent DPPH concentrations. The changes in absorbance measured vs. the concentrationof the methanolic extract resulted in curves with a linear decrease ending in a saturationregion. Linear regression analysis of the linear part of DPPH reduction versus extractconcentration enabled the determination of the microalgae's methanolic extractsantioxidative potentials which was independent to the employed DPPH concentrations. Theresulting slopes showed significant differences (6 - 34 μmol DPPH g extractconcentration) between the single different species of microalgae (Anabaena sp.,Isochrysis galbana, Phaeodactylum tricornutum, Porphyridium purpureum, Synechocystissp. PCC6803) in their ability to reduce the DPPH radical. The independency of the signal on the DPPH concentration is a valuable advantage over the determination of the EC50 value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864510PMC
http://dx.doi.org/10.3390/s7102080DOI Listing

Publication Analysis

Top Keywords

dpph radical
16
linear regression
8
regression analysis
8
dpph
8
absorbance measured
8
dpph concentrations
8
radical
5
determination dpph
4
radical oxidation
4
oxidation caused
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!