Mechanoreceptive sensory neurons innervating the skin, skeletal muscles andviscera signal both innocuous and noxious information necessary for proprioception, touchand pain. These neurons are responsible for the transduction of mechanical stimuli intoaction potentials that propagate to the central nervous system. The ability of these cells todetect mechanical stimuli impinging on them relies on the presence of mechanosensitivechannels that transduce the external mechanical forces into electrical and chemical signals.Although a great deal of information regarding the molecular and biophysical properties ofmechanosensitive channels in prokaryotes has been accumulated over the past two decades,less is known about the mechanosensitive channels necessary for proprioception and thesenses of touch and pain. This review summarizes the most pertinent data onmechanosensitive channels of mammalian somatosensory neurons, focusing on theirproperties, pharmacology and putative identity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841838 | PMC |
http://dx.doi.org/10.3390/s7091667 | DOI Listing |
Curr Hypertens Rep
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
Purpose Of Review: The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli.
View Article and Find Full Text PDFMed J Malaysia
January 2025
National University of Malaysia, Faculty of Medicine, Department of Medicine, Kuala Lumpur, Malaysia.
Introduction: Stroke is a major cause of morbidity and mortality worldwide. While electroencephalography (EEG) offers valuable data on post-stroke brain activity, qualitative EEG assessments may be misinterpreted. Therefore, we examined the potential of quantitative EEG (qEEG) to identify key band frequencies that could serve as potential electrophysiological biomarkers in stroke patients.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China.
Ulcerative colitis (UC), often referred to as "green cancer", is a chronic inflammatory bowel disease with an unclear etiology, closely associated with the imbalance of hydrogen sulfide (HS) and peroxynitrite (ONOO). HS exhibits anti-inflammatory effects at physiological levels, but excessive concentrations can compromise the intestinal barrier, while ONOO aggravates inflammation. To facilitate the molecular-level monitoring of these compounds in UC, we developed a novel fluorescent probe, , capable of simultaneously detecting HS and ONOO via distinct fluorescent channels in a cascade mode.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy.
Background: Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule.
Methods: To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets.
J Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!