Dengue and chikungunya viruses are transmitted by Aedes mosquitoes. In Martinique, an island of the French West Indies, Aedes aegypti is the suspected vector of both arboviruses; there is no Aedes albopictus on the island. During the concomitant outbreak of 2013 - 2015, the authors collected wild A. aegypti populations, and for the first time, detected dengue and chikungunya viruses in field-collected females. This paper demonstrates the mosquito's role in transmission of both dengue and chikungunya on the island, and also highlights a tool that public health authorities can use for preventing outbreaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612748PMC
http://dx.doi.org/10.26633/RPSP.2017.63DOI Listing

Publication Analysis

Top Keywords

dengue chikungunya
16
chikungunya viruses
12
aedes aegypti
8
2013 2015
8
concomitant outbreak
8
detection dengue
4
chikungunya
4
viruses natural
4
natural populations
4
aedes
4

Similar Publications

The Chikungunya virus (CHIKV) presents substantial public health challenges in the Eastern Mediterranean Region (EMR), with its prevalence and interaction with other arboviruses (ABVs) remaining poorly understood. This systematic review and meta-analysis aimed to assess the prevalence of CHIKV and its association with other ABVs, such as dengue virus (DENV), Rift Valley fever virus (RVFV), malaria, and yellow fever virus (YFV), in the EMR. We systematically searched databases including PubMed, Embase, Web of Science, Scopus, Cochrane Library, CINAHL, PsycINFO, and ScienceDirect to identify epidemiological studies that report CHIKV prevalence and provide odds ratios (ORs) for CHIKV compared to other ABVs.

View Article and Find Full Text PDF

Background: The burden of Aedes aegypti-transmitted viruses such as dengue, chikungunya, and Zika are increasing globally, fueled by urbanization and climate change, with some of the highest current rates of transmission in Asia. Local factors in the built environment have the potential to exacerbate or mitigate transmission.

Methods: In 24 informal urban settlements in Makassar, Indonesia and Suva, Fiji, we tested children under 5 years old for evidence of prior infection with dengue, chikungunya, and Zika viruses by IgG serology.

View Article and Find Full Text PDF

Aedes-borne arboviral human infections in Europe from 2000-2023: a systematic review and meta-analysis.

Travel Med Infect Dis

January 2025

University of Zürich, Epidemiology, Biostatistics and Prevention Institute, Hirschengraben 84, 8001, Zürich, Switzerland; WHO Collaborating Centre for Travellers' Health, Department of Global and Public Health, MilMedBiol Competence Centre, Hirschengraben 84, 8001, Zürich, Switzerland.

Introduction: Aedes-borne arboviral infections, both imported and autochthonous, are reported in Europe. We evaluated the landscape of these infections in Europe over 23 years and attempted to pre-empt the trajectory of impact of these infections in the climatic context of Aedes mosquito expansion in Europe.

Methods: This systematic review was conducted in accordance with PRISMA guidelines and registered in Prospero (CRD42023360259).

View Article and Find Full Text PDF

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!