A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tuning the electronic structure in stanene/graphene bilayers using strain and gas adsorption. | LitMetric

Tuning the electronic structure in stanene/graphene bilayers using strain and gas adsorption.

Phys Chem Chem Phys

Spintronic and Electronic Materials Group, Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia.

Published: September 2017

Epitaxial growth of stanene monolayers on graphene substrates is an attractive synthesis route for atomically-thin electronic components, however, it remains unclear how such composites will tolerate lattice strain and exposure to ambient atmosphere. Using density functional theory, we identified several epitaxial configurations for the stanene-graphene bilayer system and determined the effect of strain and water adsorption. In addition to previously reported co-aligned bilayers, we identify a second family of low energy structures involving rotation of one layer by thirty degrees. The band structures of the rotated configurations exhibit a fully metallic interface, whereas the co-aligned structures are poised at the transition between semimetallic and semiconductor characteristics. In general, the electronic states are directly correlated with differences in the buckling parameter of the tin layer assigned to the competition between sp and sp hybridization schemes. This can be controlled by strain to yield a metal-insulator transition in special circumstances. For the equilibrium structure, HO preferentially adsorbs on the stanene layer, and the system remains metallic with a mixture of Dirac and parabolic bands at the Fermi surface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp03678gDOI Listing

Publication Analysis

Top Keywords

tuning electronic
4
electronic structure
4
structure stanene/graphene
4
stanene/graphene bilayers
4
strain
4
bilayers strain
4
strain gas
4
gas adsorption
4
adsorption epitaxial
4
epitaxial growth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!