A concise two step synthesis of tetrazole containing macrocycles from readily accessible starting materials is presented. The first step comprises a chemoselective amidation of amino acid derived isocyanocarboxylicacid esters with unprotected symmetrical diamines to afford diverse α-isocyano-ω-amines. In the second step, the α-isocyano-ω-amines undergo an Ugi tetrazole reaction to close the macrocycle. Advantageously, this strategy allows short access to 11-19-membered macrocycles in which substituents can be independently varied at three different positions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633831PMC
http://dx.doi.org/10.1021/acs.orglett.7b02319DOI Listing

Publication Analysis

Top Keywords

synthesis tetrazole
8
concise synthesis
4
tetrazole macrocycle
4
macrocycle concise
4
concise step
4
step synthesis
4
tetrazole macrocycles
4
macrocycles accessible
4
accessible starting
4
starting materials
4

Similar Publications

Recent Developments in Azetidinone-Azole Conjugates: Emerging Antimicrobial Potentials.

Med Chem

January 2025

Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.

The emergence of multidrug-resistant microbial strains poses a significant challenge to global public health. In response, researchers have been exploring innovative antimicrobial agents with enhanced efficacy and novel mechanisms of action. One promising approach involves the synthesis of hybrid molecules combining azetidinone and azole moieties, capitalizing on the respective antimicrobial properties of both structural elements.

View Article and Find Full Text PDF

Purpose: The study aimed to investigate the pharmacokinetics and bioequivalence of coformulations of valsartan and amlodipine in healthy Chinese subjects under both fasting and fed conditions.

Methods: The research was conducted under both fasting and fed studies and employed a single-center, randomized, open-label, single-dose, three-period design with partial-repeat and crossover elements. A total of 71 healthy Chinese adult participants were included under fasting (n = 36) and fed (n = 35) conditions.

View Article and Find Full Text PDF

Background: Cardiovascular diseases constitute one of the leading causes of morbidity and mortality worldwide. Herbal medicines represent viable alternatives to the synthetic drugs currently employed in the control of hypertension. This study aimed to isolate and identify the chemical markers of and to investigate the antihypertensive and anti-matrix metalloproteinase (MMP2) activities of an aqueous extract of the leaves.

View Article and Find Full Text PDF

Previously, we confirmed systemic antihypertensive and antioxidant properties of L. leaf extract (UE) in spontaneously hypertensive rats (SHR). Here, we aimed to evaluate whether UE can alter the NO and Nrf-2 signaling to prevent local oxidative stress and kidney damage in the model of essential hypertension.

View Article and Find Full Text PDF

Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences.

Biomolecules

December 2024

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!